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Changing the topology on the domain and/or the range of a function
enables us to prove some theorems easily.

It is shown that a tunetion Jo(&, o) = (X, v)is weakly 3-continuous
if f: (X, ) = (¥, v) is weakly continuous and f has a graph 3-closed
with respect to X iff f has a graph closed in (X X ¥, v, x v). If the
range space is almost regulax (regular) then the faint continuit yis equiva-
lent to almost strong 0-continuity (strong 0-continuity).

1. Introduction. We have not attempted to give the original source
of all the definitions mentioned in this paper, but they may be obtained
from the quoted references.

For a topological space (X, 7) and 4 < X, the 0-closure of 4 and
the 6-interior of A are defined in the following way and denoted 0cl.A
and OintA respectively (see Long and Herrington, [4]). 8¢ld — {ze
€ X : for every open set U containing xl n A # @}, 6intA ={zed:
there exists an open set U containing @ such that x e U « I < A

In a topological space (X, )y ford < X, Aand A9 will be used for
the elosure of A and the interior of A respectively if there is no confusion.

A subset 4 of a topological space (X, <) is called regular open (re-

gular closed, 6-open, O-closed) if 4 — A(4d — AOA, = Ointd, 4 = 0cld)
(See Long and Herrington [4]).

In a topological space ( A, =) all 6-open sets form a topology =, on
& Long and Herrington [4] and all regular open sets form a base for g
topology =, on X. =, is called the semi-regularization topology of ~ (¢ce
Raghavan [11]). Tt is known that Tp & 7 < vand tis semi regular iff
© = 7, (see Raghavan [117), ~ is almost regular iff ©, = 5 Long and
Herrington [4], =+ is regular iff © = = Raghavan [11].

2. Some continuity types of funetions, We will not give the original
definitions of the following functions, but we will give their equivalent
forms,

Let f: (X, ©) - (¥, v) be a function. The followings are known.
(i) f is strongly 0-continuous iff S, 7o) = (¥, v)is Long and Herring-
ton [3] continuous.
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(1) f is, almost strongly O-continuous iff J (X, 19) = (¥, v)isNoiri and
Kang continnouns [9].
(iii) f is super continuous iff f: (X, +,) — (Y, v)is Reilly and Vamana-
murty continuous [12].
(iv) f is 3-continuous iff f: (X, 1,) — (Y, v;)is Reilly and Vamanamurty
continuous [12].
(v) f is almost continuous iff f: (X, 7) = (¥, v,) is Reilly and Vamana-
murty continuous [12] ,
(vi) f is faintly continuous iff f: (X, <) —(Y, vg) is Long and Herrington
continuous [4].

J: (&, 1) - (Y, v)is called 6-continuous [15] (resp. weakly §-con-
tinucus®, weakly continuous (see Baker [2])) if for each @ ¢ ¥ and each
v-open set 1V containing x, there exists an open set U such that w e U

and f(U) = V (vesp. f(U) < 7, f(U) = V.

Remark 2.1, Clearly 6-continuity implies wealk 3-continuity and
weak d-continuity implies weak continuity.

TarorREM 2.2, Let f: (X, =) — (7, v) be a Junction. The followings
are valid.

(i) If f s O-continuous, then f: (X, o) — (Y, vo) 18 continuous.
(it) If | 1s weakly S-continuous then f= (X, 1) = (Y, vy) i8 continuous.

Definition 2.3. Let f:(X, ©) - (¥, v) be a function.

(1) If f: (X, v,) — (¥, vo)is continuous then f'is called super faintly con-
tinuous.

(i) It f: (X, 7))~ (Y, vo) is continuous then fis called strong faintly
continuous.

Cleaxly f: (X, 7) — (¥, v)is super faintly continuous {strong faintly
continunous) iff for each x ¢ X and each 0-open set V containing f(z),
there exists an open set U containing # such that fU) <« V(T) < V).

Hence definitions of a function which is continuous when the origi-
nal on X or Y are changed by semi-regularization topology or topology of
H-open sets are finished.

The following diagram is shown from Baker [2], long and Herring-
ton [4], Noiri and Kang [9], Remark 2.1., Theorem 2.2, Def. 2.3.

strongly 6-con ——— super con.

almost strongly 6-con 3-con.

| |

continuous . almost con. «—— continuous
0-comyiaeemer o .. strong faintly con,

weakly 3-con.—— super faintly con.
1

1
v
weakly con. — faintly con,
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Strong faint continuity does not imply wealk continuity. We see this
from the following example.

Brample 2.4, Let X — {a, b, ¢}, Y=2X, ~— 19, X, {a}} and
v ={0, X, {a}, {e}, {a, c}} since v, = {0, X}, every function from {X,
Tor — (¥, ) is continuous. But let f: X — ¥ be g function such that
J(b)= ¢ then f is not weakly continuous.

3. Relation between weak continuity and weak d-continuity

Tumorem 3.1. f: (X, 1) — (Y, v) is weakly 8 continuous i (X
) = (Y, v) is weakly co7ntfinuous., Kir s

Proof. Let fbe weakly 3-continuous function, » € X and V pe v-open
set confainingf( x). There efists a r-open set U such that o € Uand f(ﬁ) =
cV-Uer,andz e U = . Hence Ji(X, =) - (7, v) is weakly con-
tinuous.

Now let f: (X, 1,) » (Y, v) be weakly continuous, z € X and v

be v-open set containing f(x). There exists @ .-open set U such that x e U
and f(U) < V. Since U is r,-open and z e U, there exists g regular open

set U’ such that ¢ U’ <« U. We have f(U") :f(foj’) cV.Sof: (X T) -
= (Y, v) is weakly 3-continuous. ,

I - Definition 3.2, (see Baker [2]). The graph of a function X - Y
1s said to be 3-closed i with respect to X if for each (#, y) e X x ¥V — G(f),
there exist open sets U and V such that zelUc X and yeV 'Y
and (U x 1)n@(f) = 0.

T[»JEOR]«:}\}' 3.3. The graph of f: (X, ) = (X, v) is S-closed with
respect to X iff G(f) is closed in (XX “x Y, 7, X v).

i Proof. et thegraph of f: (X, 7) - (¥, v)is d-closed with respect
to X and (2, y)e X x ¥ = G(f). There exist t-open set U and v-open -
set V' such that » e U, ye V' and ('(07 X VynG(f) = 0. Hence (r, ¥)e
EUXVelUXxVer,xv and (@, g/)eﬁ XVeXx TG So
A X ¥ — G(f) is open in (X x Fo @ X v).

No\\t let (}'{f) be closed in (X x Y, iy, x v)and (2, ) e X x Vv —
— G(f). Since X x ¥ — G(f) is open in (X x Y, =, X v) there exist a
¥y — open set U and a v-open set ¥ such that g e Uy yeViand 7 x
XVelXx¥Y—6(). Since Ue 7y there exists a regular open get U’
in (X, ) such that @ € U' = " = U. We have (z, 1) e’ x Vyec U x

X Voand (U X V)nG(f) = 0. Hence the graph of f is 8§-closed with
respect to X.

CorornAry S4.Let f: X Y be a function. If X s a semirégular
space then weal continuity is equivalent to weals S-continuity and G(f) is
elosed iff G(f) 1s S-closed with respect to X,
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COROLLARY 3.5. Let f: X - ¥ be a function. f: (X, ©,))— (¥, v)
18 weakly continuous iff f: (X, v,) - (Y, v)is weakly S-continuous.

Proof. It is known that (1), = ;80 (X, =,) is semiregular Mrsevic’.
Reilly and Vamanamurty [6]. The result is elear now from Corollary 3.4,

A space Y is called rim-compact (see Baker [2]) if for every y in
Y and every open neighborhood V of ¥, there exists an open set U such
that y e U < V and boundary of U is compact.

We give a short proof of Theorem 8 of Baker [2] below.

Turorem 3.6. (Theorem 8 of Baker [2]). If f: X —» ¥ is weakly
3-continuous ; Y 1s rim-compact and G(f) is 3-closed with respect to X, then
J is super continuous.

Proof. Clearly from Theorem 3.1 f: (X, 7,) — (Y, v) is weakly
continuous and from Theorem 3.3. G(f) is closed in (X X ¥, ©, X v).
From Theorem 3 of Noiri [7],f: (X, =,)—-( Y, v)is continuous. Hence f: (X, t)—
- (Y, v) is super continuous.

In the same way Theorem 9 of Baker [2]is a direct consequence
of Corollary 1 of Noiri [7] and Theorem 3.3.

THROREM 3.7. If f: (X, <) — (¥, v) is faintly continuwous and (Y, V)
is almost regular (regular) then f is almost strongly 0-continuous (strongly
O-continious).

Proof. Let f*: (X, v) - (¥, v) be faintly continuous and (Y, v)is
almost regular. Since f: (X, 1) — (Y, vg) is continuous and vy == v, we
have f:(X, ) - (¥, v,) is continuous. We have from Theorem 1 of
Mrsevic, Reilly, Vamanamurty [6] that (Y, v,) is regular. Hence f is a
continuous function to a regular space. Now from Theorem 8 of Long
and Herrington [3] f:(X, ) - (Y, v,) is strongly O-continuous. So
J #(X, =) = (¥, vy)lis continuous equivalently f: (X, 1) = (¥, v) is alimost
strongly 0O-continuous.

The other result can be proved in a similar way.

COROLLARY 3.8. If the ramge space is . almost regular (regular)
all types of functions between almost strong O-continuity (strong 6-continuity)
and faint continuity are equivalent.

Theorem 4.1 and Corollary 4.3 of Noiri, Kang [9] are direct conse-
quences of Theorem 3.7.

The following Corollary is a generalization of Corollary of Theorem
9 of Baker [2].

COROLLARY 3.9. If f: (X, ©) — (¥, v) 48 faintly continuous and
Y is Hausdorff and rim-compact then f is strongly 0-conlinuous.

Proof. Clear from theorem 4 of Noiri [7] that Hamadorff and rim-
compact space is regular. ]

Theorem 10 of Baker [2]is a direct consequence of Theorem 3.3 and
the fact that a function which has closed graph and compact range is
continuous.

The following Corollary is a generalization of Theorem 5 of Baker

[2].
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CoroLLARY 3.10. If f, ¢: X —» Y are S-continuous functions and
Y is Hausdorff then A = {w e X : f(w) = g(#)} is 3-closed.

Proof. Clearly f: (X, ) - (¥, v,) 18 continuous, and (Y, v,) is
Hansdorff from Proposition 1 of Mrsevic’, Reilly and Vamanamurty [6].
Hence A is 3-closed.

4. Pre-open sets and weak continuity. A set 4 is called pre-open

(semi-open) if 4 c A(4A < fi) (see Allam, Zahran, Hasanein’). Pre-open
sets are called almost open in the paper of Rose and J ankovie’, [147].

A function f: X — Y is called almost open [16] if for every open
seb V in Y f-%V) < f~-{V) and pre-open [5] if for every open set U in
X f(U) is pre-open. Rose [13] showed that almost openness is equivalent
to pre-openness.

ToeoreM 4.1. f: X - ¥ us weakly continuous iff for each pre-
open set A < Y, fY4) = fYA).

Proof. Let f: X' — T be weakly continuous and 4 be a pre-open set.
Then A = 4 « 4 e 4, f-4(4) « f1(4) < f-(d) cf-¥). Since 1 is weakly

continuous and A is an open set we get f~1(4) = f—l(j) c f-1(4) from the
fact thet f: X — ¥ is weakly continuous iff for each open set V in 7Y,

V) < /-4V) Rose and Jankovié [14]. Hence f-Y(4) < f1(d) < fYA).

The converse is clear from the property mentioned above.

Theorem 2.2. and Theorem 2.3 of Allam, Zahran and Hasanein (1]
is a corollary of Theorem 3.1 which generalizes Lemma 2.14 of Allam,
Zabhran and Hasanein [1].

COROLLARY 4.2. (Theorem 2.3 of Allam, Zahran, Hasanein [1]).
Let f: X — Y bean almost continuous mapping. Then for each pre-open set
A = ¥, fH4) = fAA).

The following Lemma is a generalization of Lemma 2.13 of Allam,
Zahran and Hasanein [1] and contains a short proof.

LrMMA 43, f: X > Y is weakly continuwous iff for every pre-open
set A in XY, fYA4) < intf-YA).

Proof. Let f be weakly continuous and A he a pre-open set in V.

We know that f: X — ¥ is weakly continuous iff for each open set Vin
i 2 < 1

Y f7UV) < int(f~V)). Since 4 =4 we have fYA)cfYV)cint(f-1(4)<
= intf-} 4)

The converse is clear,

LEMMA 44, If f: X - X isipre-open function then for every semi-
open set B in Y, f-Y(B) < fB).
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Proof. Let f: X — Y be pre-open and B be a semi-open set. Clearly
Bc Band B {3 o
JUB) = fUB) = fYB) <

open.

Q
B) since f is pre-open and B is

LeMMA 4.5, f: X 5 ¥ wu is pre-open and  almost continuous iff for
every semi-open set B in Y fB) = fI(B).

Proof. 1t is clear from Lemma 4.4, the definition of almogt opennegs _

which is equivalent to pre-openness, the Theorem of Mamata Deb (it is
seen from Corollary 2 of Prakash and Srivastava [107) and the fact that
every open set is semi-open.

COROLLARY 4.6, f:X - Y s weakly  continuous and pre-open
iff for each open set V in Y FHVy = 57,

Proof. It is clear from the fact that fis _Pre-open (resp. weakly con-
tinuous) iff for each open set Vin ¥ fHVye YY) (resp. [~ V) & f~Y7)).

Theorem 2.7 of Allam, Zahrvan, Hasanein [1]is a direct consegquence
the following corollary which generalizes Corollary 2.5 of Allam, Ziahran,
Hasanein [1],

CorOLLARY 4.7. f: X — ¥ s almost] continwous and pre-open iff

Jor each open set V in Y, Y V) = f-7).

Proof. Clearly the pre-open and weakly continuous function is almost
continuous from Theorem 2.2 of Singal and Singal [156] and Lemma 4.4
of Noiri [8] and the almost continuous function isweakly continuous.
froof is clear now from Corollary 4.6,

LEMMA 4.8, If (A is a pre-open subset of X then < JA (i.e. induced
topology on X by =,) is a subset of (=/A),. L1

Proof. It U is regular open set in (X, 7) then AnU is. regular
open in the subspace /4 from Lemma 2.8 of Allam, Zahran, Hasanein
[1]. Hence =,/4 < (t/4),.

The fllowing theorem is given by Allan, Zahran, Hasanein [17,
hut we will give a different proof of it.

ToroREM 4.9. (Theorem 2.9. of Allan, Zahran, 'Hagsanein (1]). If
Fi(X, ©) - (¥, v) s S-continuous, and A is pre-open n (X, 1), then
JIA (A, =) - (Y, v) is S-continuous. _

LProof. Since fif 3-continuous, f : (X, 75) = (¥, v,) is continuous. Clearly
JIA (4, «[4) (Y, v,) is continuous and from Lemma 4.8 f/lA: (A4,
(t/4),) ='(¥, v,) 'is  continuous. Hence JlA: (A =AYy (Y, v) is
8-continuous.

Tueormy 4.10. If f: (X, <) = (Y, v) 48 super continuwous (su-
per faintly continuous) and A is pre-open set in X then JIA: (4, </4) >
= (X, v) 15 super continuous (super Jaintly continuous). o

Proof. 1t is similar to the proof of Theorem 4.9, Theorem 6 of Baker
[2] is a corollary of Theorem 4.10. |
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