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ON INEQUALITIES FOR INDEFINITE FORM
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1. In this paper are given proofs of the Aczél, Popoviciu and Bellman
inequalities concerning an indefinite form, by the method of a common
fixed point [3]. Also, some premises are corrected and added the necessary
and suftficient conditions when in the Popoviciu and Bellman inequalities
hold equalities.

The indefinite form is [%]?
B() = (2] — aF—...— aB)? | p > 1
for values of the w; in the region R defined by
(2) ;>0
(b) @y > (234 a4 ... @B,
The next theorem due to J. Aczél, 1956. [4].

THEOREM A. Let a = (ay, ... ,0,) and b = (by,...,b,) be two se-
quences of real numbers, such that

af —af — ... —a2l>0, 0r b} —b2 — ... — 2> 0.
Then ’

(0f —af — ... —a)(B] — b2 — ... —B2) < (@b, — aby— ... — a,h,)3,
with equality if and only if the sequences a and b are proportional. y B

2. The Aczél inequality was generalised by T. Popoviciu
Ay (@ —af—ooe —a)(B? — 03 — ... —bEY< (@b —agh, — ... — ,0,)%a
The conditions
(2) Pt —af — ... —a) >0, 0r B —b2 — ... b2 >0
and p > 1 given in [4] are not sufficient. The counterexample is p

=3,a="b=(2, 1, 1, 1) when (1) becomes 5-5 < 1.Forp > 2, n
= 2 and a; > a, the converse inequality holds

i

1 D
(3) (b —af)E>(af —ad)ort —1> (1 — 1), t:(a%l),q:i..
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The function y(t) = (-~ 1) '¢ > 1, 0 < ¢ <1 has a derivate y'(f) —
1

= (1—19 q‘q with boundaries 0 < y'(t) <1, so we obtain (3).

TueoreMm B. If a = (ay, .-, a,) and b = (by, ..., b,) are sequences
of monnegative real numbers such that :

(4) @ —af — ... —af >0 and ¥ — D — ... — b2 > 0,
then, for 0 <p < 2,
(5) (of — af — ... —aB)V? (B2 — 0% . .. — b2V < a,b, — Wgby— oo o — by,

and conversely for » < 0.

1f p <2 equality holds if and only if a = (23, 0,...,0) and b =
—(0,0,...,0). If p = 2 equality holds if and only if a and b are propor-
tional.

Proof. Let 0, <p < 2,

X =H(», ..., m) e, 20, ceeyay 2 0,
=2 — ... —ah =0 —al— ... —aZ},

Y = {(yy, -5 ¥a) 19120, ..,y 210,

Y=Y — o =y =00 — .. — b3},
and a functional f: X X Y - R
Ay y) = (2agy — @ays — oo — @) — (0 — @ — ... — aB)(h — yE—
— = ). .

1t @y = a; Or by = b; for some © € {2, . .., n}, then (5) is trivial. Hence, sup-
pose that a; > a; and b; > b, for all 1 — 2,...,n.

i

Let o :@,@:Z_and @ < B. Let

@ 1
6y - b = (Bly By« -y bis1, by bie1, .o 1, Do),
where b and b; are such that
(1) P — B = b — BP, b1 b — a,: .

Conditions (7) are satisfied if .
: 1
P o AV
b = Say, b} = da, 8—{a§’~a€) ,
Inequality « <8 implies that o] < b, and b} <b;.
Let us now demonstrate that f(a, b) > f(a, b]) i.e.

by — by > ab] — ab; = (ai — a?),

or
(8) b{) = bf <( albl —— a/:bi)p 1.— Bp < I — u? 8
a? — af a? — ai (T — ap)? (1 — aa)?
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1 — ¢ — -1
Let () = — <t <1, so that ¢'(¢) = Pher BTH

Mt i)
(1 — atyr ’ (1 — at)rs

If 0 <p < 1 then « <l < 14 i1 < p <2 then « < ! < ol
so that ¢'(t) <0, « <¢ <1, what implies (8).

In the case that o > g, similarly defines a’.
Mappings ', : X X ¥ — X x Y,1=2,..,n

)

7y (2, y) — [ (@, 9, il ay, < o,
=

1(97’7 ?/)’ if Xy
are in accordance with the functional

ey y) > J(d2, ).

3
1Y

U

Let
( 9 ) n i

Lo i

,‘27..., !'7”,...

be a sequence of mappings By oo, I, in which each of these mappings
infinitely times appears. Application of (9) generates a sequence of vectors

(10) " (4, b), (@, O = 7, (a, )

g e

coy (@t by = By (@b =10 pon HOYIETE

i

The coordinates in (10) nonincrease so that'

lim (@) gy Zie, @y e X % ¥

N =00

and

(11) fa, 8) = fla, p0y » ... > Jlat? by > o 5 (e, d).
The mapping I, ke {2,'. .., n} is continuous so'that

LHm Fy(at, pe ) = e, d).
Hl— 00
Let  {j,} be a sequence of indexes such that i, =k, meN. The
sequence '

-

(i, +1)

] 1) £
(Cl/ Iin

('7]- + 4 tt; ) (ij )
y D) =0 (a ) b Te) =1,2, ...
is a subsequence of both convergent sequences
{altm, by angd {I(at, b1 50 they
converge to the same limit (¢, d) = 1(c, d). Hence, (¢, d) is a ‘common
fixed point for all mappings F,, ..., F,, what implies proportionality
d=rc, r>0.
It remains to prove that
fle, ) =(cf— ek — ... — a2y — (6 —ef— ... —c2)2 > 0.

Let ie{2, ...,
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ht) = (82 — 2 — ... —ci, — 18— ... — 2P —
— (P - — ... — P — 1P — ... — Ch)?,

P 3 2 % ] _FFr .
t>)ed —c, 12—t =c —dc and so t — 7' =0

A derivate is

hi(t) = —2(tF — ®— ... — 17 — ... —cB)pt (2 — 1% > 0,
so that
f(C, G) }f(I{i(C), H,:(C)),

where B

H,(¢) = (fF = &} ¢y, = ey Ciray ! Oy Ciggy « -+ 4Cn)-
Therefore

Jle, ¢) > f(Hy(e), Hy0))> ... >

(12) 2 f(Hu(o .. Ho(e) ... ), Hul... Hye)...)) =

:f((Vc%—cﬁ— o — Oy 07"'10)7 (VG%——CE——C?“ 0""’0)):0°

If p <0 then
D(AYDO(D) = ab, 2 ady — azby, — ... — by,

and it is obvious when equality holds. If p = 0 conditions (4) are not
isfi 2), so that theorem is valid. . B _

SatlShl?gr (;)L z2 )i’n (5) equality holds if and only if it holds in sequence;

(11) and (12), what implies a = (a;, 0, ...,0) and b = (b, 0, '._._.,0). I

p = 2 then f(e, ¢) = 0, so that equality holds only for proportional se-

quences.

3. For the R. Bellman inequality (13) in [4]3113 i is supposed same
condition (2). The counterexample is p = 3, a = (3[)/9, 2,0,...,.0), b=
= (0,1,0, ...,0), when (13) becomes 1 + (—1) < [/ —18. In the origi-
nal p7ap’er [2] and algo in [1], the premise is sharper

— a2 >0 and P — b — ... — b8 >0,

a%’—a%’—

what is weaken in the next theorem. _ ‘
TuREOREM C. If @ = (ay, ..., an) and b = (by, ..., b,) are sequences
of monnegative real numbers which satisfy

a? —af— ... —ab >0 and BF— b — ... — 0% > 0,
'(:;;;7;, _ p(;’i a— ... —a)t (- — ... P
< ((@g 4 by — (B2 + b5)" — + oo — (aa - ba)?)2.
Equality holds if and only tf a and b are proportional.
Proof. Let
(14) f(a, b) = ®(a, b) — ®(a) — B(b).

5
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Inequality f(a, b) > Jfla, b'), v. (6), is equivalent to
(@ 007 — (s 1) > (4 + Sa Y — (@, + Say)? —
= (af — a?)(1 } 8)» =

= (@ — o) 4 (B2 — b7 yiry
or

(15) (af — a7 (b — b0)P < ((ay - b))? — (a; |- byyryUe,
what is inequality (13) for »n — 2.
¥or the sake of determination, let %< % .
1

aq
The function

g8 = (b)) — (a0 4 b)P)VP — (82 — a2 )P — (b7 — pryUp,

t > —bla/i has a derivate

' 1-p 1—p
9'®) = (¢ + b)" — (@ + D)P)F (t-F by)p-t —(g» — ai) 7 L.

The relation ¢’(t) > 0 can be reduced to

(4 01)" (7 — a) > ((t + b,)" — (a; 4 b)P)ee,
i.e. t”(ai + bi)p = a?,;’(t—'}—- bl)p and tb»; = bla/i.

Hence, g(a,) > g(% ai) =0, what proves (15).
Like in the proof of the foregoing theorem, it can be formed a se-
quence (11). The function (14) has nought value for proportional sequences,
¢ and d, when only equality-gign holds.
In this proof it ean be transformed only one vector, e.g. b, b, . ..
ooy b 0 Cwhich converges to a vector proportional 10 a.
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