MATHEMATICA - REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 20, N° 1-2, 1991, pp. 77-81

ON ABSOLUTE SUMMABILITY FACTORS

M. ALI SARIGÖL (Kayseri)

In the present paper, the hypotheses of a theorem on absolute summability factors of infinite series have been weakened.

1. DEFINITION. Let $\sum a_n$ be an infinite series with partial sums s_n and let (p_n) be a sequence of positive real numbers such that

$$P_n=p_0+p_1+\ldots+p_n o\infty$$
 as $n o\infty$, $(P_{-1}=p_{-1}=0)$.

The sequence-to-sequence transformation:

$$t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \ (P_n > 0)$$

defines the sequence (t_n) of (\overline{N}, p_n) mean of the sequence (s_n) , generated the sequence of coefficients (p_n) . The series $\sum a_n$ is called summable $|\overline{N}, p_n|_k$, $k \ge 1$, if (see Bor¹)

$$\sum_{n=1}^{\infty}\left(rac{P_n}{p_n}
ight)^{k-1}|t_n-t_{n-1}|^k<\infty.$$

2. Bor¹ proved the following theorem in 1987.

THEOREM A. Let (x_n) be a positive non-decreasing sequence and there be sequences (β_n) and (λ_n) such that

$$|\Delta\lambda_n| \leqslant \beta_n \tag{2.1}$$

$$\beta_n \to 0 \quad as \quad n \to \infty \tag{2.1}$$

$$\sum_{n=1}^{\infty} n |\Delta \beta_n| |x_n| < \infty \tag{2.3}$$

$$|\lambda_n| x_n = 0(1) \tag{2.4}$$

and, for $k \ge 1$,

$$\sum_{v=1}^{n} \frac{1}{v} |s_v|^k = 0(x_n) \text{ as } n \to \infty.$$
 (2.5)

Suppose further the sequence (p_n) is such that

$$P_n = 0(np_n) \tag{2.6}$$

$$P_n \Delta p_n = 0(p_n p_{n+1}). \tag{2.7}$$

Then the series $\sum_{n=1}^{\infty} a_n \frac{p_n \lambda_n}{n p_n}$ is summable $|\overline{N}, p_n|_k |k| \ge 1$.

3. The object of this paper is, by weakening conditions, to obtain a more general theorem than the one due to Bor¹. In what follows we shall prove the following theorem.

THEOREM B. Let $k \ge 1$ and let (x_n) be a positive non-decreasing sequence. Under the assumptions (2.1), (2.2), (2.5) and (2.6) of theorem A if the sequences (β_n) , (λ_n) and (p_n) satisfy

$$\sum_{n=1}^{\infty} x_n |\Delta(|\lambda_n|^k) < \infty \tag{3.1}$$

$$\sum_{n=1}^{\infty} n^k x_n (\beta_n + \beta_{n+1})^{k-1} |\Delta \beta_n| < \infty$$
 (3.2)

$$x_n |\lambda_n|^k = 0(1) (3.3)$$

and

$$\Delta\left(\frac{P_n}{np_n}\right) = 0\left(\frac{1}{n}\right) \text{ as } n \to \infty. \tag{3.4}$$

Then the series $\sum_{n=0}^{\infty} a_n \frac{P_n \lambda_n}{m}$ is summable $|\overline{N}, p_n|_k$.

It may be remarked one of the conditions (3.1) and (3.2) does not

imply to the other under the conditions of theorem A.

On the other hand the hypotheses of theorem A imply the hypotheses of theorem B, but the converse of this implication need not be true. This can be shown as follows. By observation of Mishra [2], the conditions (2.2) and (2.3) imply that

$$nx_n \beta_n = 0(1) \tag{3.5}$$

and

$$\sum_{n=1}^{\infty} \beta_n x_n < \infty. \tag{3.6}$$

By (3.5), we can also write

$$n(\beta_n + \beta_{n+1}) = 0(1).$$

Hence, we have

$$\sum_{n=1}^{\infty} n^k x_n (\beta_n + \beta_{n+1})^{k-1} |\Delta \beta_n| = \sum_{n=1}^{\infty} n x_n \left\{ n (\beta_n + \beta_{n+1}) \right\}^{k-1} |\Delta \beta_n| = 0$$

$$= 0 (1) \sum_{n=1}^{\infty} n x_n |\Delta \beta_n| = 0 (1),$$

and considering that

$$\Delta |\lambda_n|^k = |\lambda_n|^k - |\lambda_{n+1}|^k = k \, \xi_n^{k-1} (|\lambda_n| - |\lambda_{n+1}|) \tag{3.7}$$

where ξ_n lies between $|\lambda_n|$ and $|\lambda_{n+1}|$, we have

$$\sum_{n=1}^{\infty} |x_n| |\Delta(|\lambda_n|^k)| = k \sum_{n=1}^{\infty} |x_n| |\xi_n^{k-1}| |\Delta(|\lambda_n|)| =$$

$$= 0(1) \sum_{n=1}^{\infty} x_n \beta_n = 0(1), \text{ by } (3.6).$$

Hence, (2.2) and $(2.3) \Rightarrow (3.1)$ and (3.2). In addition, it is clear that $(2.4) \Rightarrow (3.3)$ and, that (2.6) and $(2.7) \Rightarrow (3.4)$ (see Mishra and Srivastava[3]). To show the converse, it is sufficient to take that $x_n = \log(n+1)$, $\lambda_n = x_n^{-1}$, $\Delta \lambda_n = \beta_n$ and k > 1.

4. For the proof of the theorem we require the following Lemma.

LEMMA. If the sequence (β_n) satisfies the conditions (2.2) and (3.2) then, for $k \ge 1$,

 $x_n(n\,\beta_n)^k = 0(1)$ and. (4.1)

$$\sum_{v=1}^{n} v^{k-1} x_{v} \beta_{v}^{k} = 0$$
 (1.1) as $n \to \infty$ (4.2)

Proof. Since $\beta_n \to \infty$ as $n \to \infty$ by (2.2), we have

$$x_n(n\beta_u)^k \leqslant x_n n^k \sum_{v=n}^{\infty} |\Delta \beta_v^k| \leqslant \sum_{v=n}^{\infty} v^k x_o(\beta_v + \beta_{v+1})^{k-1} |\Delta \beta_v| = 0$$
 (1) by (3.2),

and

$$\sum_{v=1}^{n} v^{k-1} x_{v} \beta_{v}^{k} = 0 (1) \sum_{v=1}^{\infty} v^{k-1} x_{v} \sum_{i=v}^{\infty} |\Delta \beta_{i}^{k}| = 0 (1) \sum_{i=1}^{\infty} |\Delta \beta_{i}^{k}| \sum_{v=1}^{i} v^{k-1} x_{v} = 0 (1) \sum_{i=1}^{\infty} i^{k} x_{i} (\beta_{i} + \beta_{i+1})^{k-1} |\Delta \beta_{i}| = 0 (1) \text{ by (3.2)}.$$

5. Proof of the theorem. For establishing the theorem we have to prove that

$$\sum_{n=1}^{\infty} \left(rac{P_n}{p_n}
ight)^{k-1} |T_n - T_{n-1}|^k < \infty$$

where

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{r=1}^v \frac{a_r P_r \lambda_r}{r p_r} = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) \frac{a_v P_v \lambda_v}{n p_v}.$$

So.

$$T_n-T_{n-1}=\Delta\Big(rac{1}{P_{n-1}}\Big)\sum_{v=0}^nrac{P_{v-1}P_va_v\lambda_v}{vp_v}\,,\quad n\geqslant 1.$$

Abel's transformation enables us to get that

$$T_n - T_{n-1} = \Delta \left(\frac{1}{P_{n-1}}\right) \sum_{v=1}^{n-1} \frac{P_v P_{v+1} + \Delta \lambda_v s_v}{(v+1) p_{v+1}} - \Delta \left(\frac{1}{P_{n-1}}\right) \sum_{v=1}^{n-1} \frac{P_v \lambda_v s_v}{v} +$$

$$+ \Delta \left(\frac{1}{P_{n-1}}\right) \sum_{v=1}^{n-1} P_v \Delta \left(\frac{P_v}{v p_v}\right) \lambda_v s_v + \frac{\lambda_n}{n} s_n = T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \text{ say.}$$

By Minkowki's inequality, it is sufficient to show that $\sum_{n=1}^{\infty} \left(\frac{P_n}{n}\right)^{k-1} |T_{n,i}|^k < \infty$

Now, using (2.6), we have

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,1}|^k = 0 \\ (1) \sum_{n=2}^{m+1} \left(\frac{1}{P_{n-1}}\right)^{k-1} \Delta \left(\frac{1}{P_{n-1}}\right) \left\{ \sum_{v=1}^{m-1} \frac{P_v}{p_v} \cdot p_v \mid \Delta \lambda_v \mid \mid s_v \mid \right\}^k$$

Hölder's inequality gives us that

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,1}|^k = 0 (1) \sum_{n=2}^{m+1} \Delta \left(\frac{1}{P_{n-1}}\right) \times \\ \times \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v}\right)^k p_v |\Delta \lambda_v|^k |s_v|^k x \left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right\}^{k-1} = \\ = 0 (1) \sum_{v=1}^{m} \left(\frac{P_v}{p_v}\right)^k p_v |\Delta \lambda_v|^k |s_v|^k \sum_{n=v+1}^{m+1} \Delta \left(\frac{1}{P_{n-1}}\right) = \\ = 0 (1) \sum_{v=1}^{m} \left(\frac{P_v}{vp_v}\right)^{k-1} v^k |\Delta \lambda_v|^k \frac{|s_v|^k}{v} = 0 (1) \sum_{v=1}^{m} v^k \beta_v^k \frac{|s_v|^k}{v}$$

by virtues of (2.1) and (2.6).

Replacing $|\lambda_v|$ by β_v in equality (3.7), we have that $|\Delta \hat{\beta}_v^k| = 0$ (1) $(\beta_v + \beta_{v+1})^{k-1} |\Delta \beta_v|$. So,

$$\sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,1}|^k = 0 (1) \sum_{v=1}^{m-1} v^k x_v (\beta_v + \beta_{v+1})^{k-1} |\Delta \beta_v| +$$

$$+ 0 (1) \sum_{v=1}^{m-1} (v+1)^{k-1} x_{v+1} \beta_{v+1}^k + 0 (1) x_m (m \beta_m)^k =$$

$$= 0 (1) \text{ as } m \to \infty, \text{ by (3.2), (4.1) and (4.2).}$$

Again, by (2.6), we have

$$\sum_{n=2}^{m+1} \left(\frac{P_{n}}{p_{n}}\right)^{k-1} |T_{n,2}|^{k} = \sum_{n=2}^{m+1} \left(\frac{1}{P_{n-1}}\right)^{k-1} \Delta \left(\frac{1}{P_{n-1}}\right) \left|\sum_{v=1}^{n-1} \frac{P_{v}}{vp_{v}} p_{v} \lambda_{v} s_{v}\right|^{k} =$$

$$= 0(1) \sum_{n=2}^{m+1} \Delta \left(\frac{1}{P_{n-1}}\right) \sum_{v=1}^{n-1} \left(\frac{P_{v}}{vp_{v}}\right)^{h} p_{v} |\lambda_{v}|^{k} |s_{v}|^{k} x \left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} =$$

$$= 0(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{vp_{v}}\right)^{h} p_{v} |\lambda_{v}|^{k} |s_{v}|^{k} \sum_{n=v+1}^{m+1} \Delta \left(\frac{1}{P_{n-1}}\right) = 0(1) \sum_{v=1}^{m} |\lambda_{v}|^{k} \frac{|s_{v}|^{k}}{v} =$$

$$= 0(1) \sum_{v=1}^{m-1} x_{v} |\Delta(|\lambda_{v}|^{k})| + 0(1) x_{m} |\lambda_{m}|^{k} = 0(1) \text{ as } m \to \infty, \text{ by (3.1) and (3.3)}.$$
Hence, considering (3.4), as in T

Hence, considering (3.4), as in $T_{n,2}$, we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,3}|^k &= \sum_{n=2}^{m+1} \left(\frac{1}{P_{n-1}}\right)^{k-1} \Delta \left(\frac{1}{P_{n-1}}\right) \left|\sum_{v=1}^{n-1} P_v \Delta \left(\frac{P_v}{v p_v}\right) \lambda_v s_v\right|^k \\ &= 0 (1) \sum_{n=2}^{m+1} \left(\frac{1}{P_{n-1}}\right)^{k-1} \Delta \left(\frac{1}{P_{n-1}}\right) \left|\sum_{v=1}^{n-1} \frac{P_v}{v} \lambda_v s_v\right|^k = 0 (1) \text{ as } m \to \infty. \end{split}$$
 Finally, as in $T_{n,2}$, we have

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |T_{n,4}|^k = \sum_{n=1}^{m} \left(\frac{P_n}{np_n}\right)^{k-1} |\lambda_n|^k \frac{|s_n|^k}{n} =$$

$$= 0(1) \sum_{n=1}^{m} |\lambda_n|^k \frac{|s_n|^k}{n} = 0(1) \text{ as } m \to \infty,$$
where the

which completes the proof.

REFERENCES

Bor, H., Indian J. pure appl. Math.. 18 (4), (1987), 330-336.
 Mishra, K. N., Indian J. pure appl. Math., 14 (1983), 40-43.

3. Mishra K. N., and Srivastava, R. S. L., Indian J. pure appl. Math., 15 (1984),

Received September 15, 1990

Department of Mathematics, Erciyes University Kayseri 38039, Turkey