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SOME REM ARKS ON MEANS

GIL 10A DILR
((lluj—Napo(‘a)

1. Wntroduction, A mean (o two bositive peql umbers) s defined
e [187 ag g Taaetion MRz R, which has the Droperty -

(1) min (g, Y) < Mz, ¥) < max (@, ), Yo, 4 > 0.
Most of §l0 usual megng have additiong] Propeviies like Symmetry .

2) (@, y) = My, @), Vo, y ~ 0;

2

],101110geni}ity (of order one) ;

(3) H(tw, ty) — LM (e, y), Vi, @,y s 0;

O monotony ; {pe mean A jg inereasmg it .

(4) Mz, y) < M, 4y i o S a’and y « Y.

We mugt Temark that )6 relation (1) does not, imply any Iind of mong tony
For example, {he counterharmonie mean ¢!, defineq by .

U2, y) < (22 Y [ (% -+ ¢)
has the broperty .

C11/3,1) = o172, | ) = 5/6.

Some megng hayve appeared in pracicn] Droblemy, Naturally, the
POSE employed iy the m'it;lmwigic mean hut, as it ig pointed out iy [10],
in the theory of electrical botential if; g uged {he harmonic megn while
in mvestmeny, Problems {he geometrie megy. Also, in [30], it is men-
bioned the pole of the logarithmie mean in the Study of the distribution
OF electrical charge on condnetor,

Apart from Lhese means, there are also definegd many others. In
lact we dispose of methods of contrnction of nieans. In whgt, followg
We shall reming a few of them and also some of the generated neans,

7 s 309y
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i ions hetw nealls and apply (hem

y ize the n elations hetween maoans PR e

Then we summarize the main rels e SRy AL thad (TR,

l ; h;—-][] )\\q(tinﬁlv ()f(?b property ol homogeneity more jje_llel.@} 111]1] Z\IL iéio)wnn(’.fl»l'i &

Sl 11'(’ s Tesults,on double sequences related to the arithme o

we give results Y geq

I i " . N ‘o

mean of Gaunss. . T i

The paper contains some new results L)giv 1t '1\1;]&1].1‘111 1’);‘(\1)“[”.8 1”. i

{ H']‘o ﬁ%uh& ol the author which have appeared preg

out the results of th it
volumies with less cireulation.

b whods {for con-

2, Construction of means, There are L»\’lt)l’f: .g‘el1101{.3101(1'1:,[_2;,?(115\1”3(){"i(m;ﬂ

S rl’mi(m of means. Some of them use ril-]gﬂ(‘,bl(bl‘(‘, ;n c’ -QZ(:I 2L e lehe

et ike those from [6] [24], [30]. Others are base L o1 S

equations like thos lerivatives or for integrals (seo [12], [0, [22], (3

“Iﬁ_-'a-.lue 11118;1‘1:;111“5?1:} /In'[SS} we have used the mean '\-';,Ll'llre\ t]]:(;(())jl]?n:h{:”

alarels Wil fe sions) which seems to he more coriver Wt

i (W*l};h -tlvirt;of:;i{:Lf]ft)'n(t\ﬁ?gi,l:t:.]lll_l;fﬂh:1,:((&“1'1] (9] If f is a 1’\@}191.9!11‘?‘ “1(113

i Bt ‘V‘!?l]lgt(-'tl:(;]ll which does not, change the sign and 18 not identieal
;2:'1(311(1)111101:1[:1;\*1inter\’ﬂ.‘.l, then we define a jmean V,, by :

Vrates 1) =1 S(./‘(m o0t [\ o) ).

i usual means like :
i is way some of the usual means lil
We can obtain on this way sonc

/ 4 O ) (extended means)
Sl ) = ((s7) (&7 — ") | (2% — y)) (

and — ) dog @ — log )
(generalized logarithmic).

Lo, y) = S, oy y) = (' (a

! e
' ‘ =1 with $ =0 in {he second
To get them we use : f(1) — " and () =1 with
case. As special ¢ases we have :

; (7 - )2 (the power mean)
ARG R L) =" (" 55y MAWE R ]

L(a, ) Py(ay, y) = (o - 4)/2  (the arithmetic mean)
WL, W) = A0, i) = = )

‘ = (wy)'™ (the geometrie mean)
Gy y) == Polw, y) = (ay)'e i

= Da (e - (the harmonic mean)
Hia, o) = P_\(x, y) = 2ay/(a %) |

e PO T - IH) the logarithmic newn)
Tia = (i = (a2 = y)/(log o logy)y | &
L) = -I'I(" s ) (a NATAS

'I/r)/’(/"‘ “))1'!"\' ) ((J & (_l'dwl\'éh[l_] ““’“-‘“_/’
iy i

(" ¥ =) v 1d e ’ i(f Hnean
= (3 '(.'l'“,/.')/‘!)]"('] 4 (1[1(, 1(](“1] [4re )

o veralized identric maead),
: ' AR E A generalized identric ]
£, (x, y) = Sz, 1) =k @y ) (g

o ————

SArKS on maa« 09
Alxso, taking f() - L ogll) — 4 A exponentiy| mean ;

Blar, i) = ((a Le— iy D for — g

which we defined in ['36 |

and studied also in
Remariing thai

(28]
almogt gl o1

" Lhe above means

are ol e Torn -

-”}-,.\‘(Lz?, W) = ( ,(/(l[ ),

where f. and U5 are homogeneoyy functions of degree ¢ respectively g
subject to some conditions, wo gy give also the following exXINDley «
M (a2, 4y (myr HEr) [ (a = W) (the Moskovity, ean)
Lol 9y) = (2" ey /(L Y,

Wilh specigl CANEN ;

T
e

Lthe (Hnj nean)

o (tihe Beckenbael - Lehmer Niean)

O = Loy (the contraharnonic mean).
Fop ¢ — S, the Ging mean is given i 27 by,
Pz, y) = exp ((ar log a: y log 1) P = ),

Using the same dea, we haye defined iy
of geometrie and h."bl,‘Jllt)lll(‘/Jl'](*‘d:ll,\'. There are we

[37] some generalizations
seneralizationy of A, G and 17

13

N known {he nonsvimmetric

Uy,

/(;'l', (/) = qxi /J (/I/ *-f— (l — /)

Gy 1) — @yl

I @) for ¢ e ]_(),I_i.

We have

Proposed
G oand 1 -

the 'J‘()llu\\'ing,:' (Synnetric or not) ceneralizations o

Gl y) = BB (L e e it b)acy by2)liz g <ay, b
0. a2, )= (az2 (¢ =l — /»).1'//»7;‘-/),1/3)/((,':‘1'-—{— ), 6 <a S0<h <4

We remind also that Tricomi s characterized in [AL] the linen
nations ad - p@ = = g b which aye meansy.
Rinally we must remark that from
struet  others by various methods, Fop
mean M we ean altach g sviimetric one

combhi-
Some given means we can ¢or-

example, (o g Housyiumetric
MY defined Dy s

M )= By ) By, o)y,
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— sider its inverse A7 defined by e
Also, fTor a given mean M we can consider ils inverse 477 de ‘
DAty &
Mz, y) = wy| Mz, y)

or its complement M defined by :

i f G is @, that o is M and of 1, is f_,. 'Phe
For instance, the inverse of @ }.er,.Lhaif, of A is I a
complement of A is A4 and of H ig (/.. Ltk fur g
Fiven the mean M and the bijection f, we can define 4 T
by :

H(f) (@, y) = [THH(f(2), J(5)).

ded f 1 y Pietra in [26]. 16 is easy Lo sec

This method was studied for example by Pietra in vl'"()'{' [ { Iy i(b \l‘:] el(m ¥
.{:lmt from the arvithmetic mean we cah ob'l_;.zul:n :.tlh(—\, 1?1(1).110‘1: ([/h(‘\ 7;5\\5@1-
using f(@) = 1/x, the geometric mean G using Jlw) == log a, ! ;.-‘ll»r-]-u-i‘

¥ ) i 4t ; I ¥ i o D T PR SR e ,“)
1'1'{0'1;; P, using f(@) = o and so on. Algo, in [28] we have rema

Cebll L7y, " S
that :

(5) b = I(exp).
Inwhat follows we shall also use two means obtained Ghis Way

I = L{exp) and R, = P {ex]p).

We denote also: £ = R,. ] e
Given two means M and M’ we can also define the means 1/ J M
and MA D by
My My y) == max (M (@, 4), M'(x, )
respeciively . o
MA My y) = min (M(x, y), M'(%, y).

Their meaning will be more clear in the following ])}Ll’&;,’,‘l‘:b}):]. I
A 5 ULt ey E K bl , e hy ‘; /j ks \
Also, given three means M, H', M we define the mean (M, )
Also, give ,
bv: ) NF
: MM M) (wy y) = MM (2, y), M (e, 5)).

j bie divst or the second projections given hy
The means can he even the first or the sec ond proj o

This method was used, for instance, in [fjrlfj‘ i ]jil.(}:‘] or »[_']’ {‘IT.Q _L\'li({:uil:, :)t’:-:]l(;‘lbil(]*]dﬁ
ed by thismethod are also used in [12], [S_J‘:pud,f [;4; 'l(',~':[v]i lro.]]q\\: <’)"i‘ k]].l();,mm
the 'ﬁl'()bl.el,n. of conservation by (mmp_omtlgn 0,‘(1,' 5,}‘\'](].,1; class of |
Jor example, when P(P;, P)) is again @ power mea i

We say that M is symmetric to #7 velative to M if

MM, MY = M.

Some remarvks on meang 101

The symmetry relative to .4 is considered in [23] related to some results
of Tricomi [40]. In fact, M7 iy symmetric Lo I relative to At s
the complement of 4

and M’ is symmetrie Lo M velative to @ it
Iy the inverse of J7,

Another method of construction of means will he given in the lag
Paragraph.

b

Jo Comparisen of means, Hxisting more means it was natura
to compare them. The beginning w;

as done by the famous geometrie-
-arithmetic mean meguality which Thas many proofs (sce [0]).

We say that the megns Aand M ave in the relation : 1 — n' g

Mz, y) < W2, y) for a 7 .

Ax it s known (see [18]):

which generalizes the above mentioned inequality

H <G 4.

We also say that 12, i§ strictly mereasing in g, _.-'\iJ;Ll()go'l,m],\r, i {307
K. B. Stolarsky proved that S, is striet ly increasing in 5 oy that &, s
strietly inereasing in hoth » and s. This last vesylt was Improved hy 3.
B. Leach and M, (. Sholander in [20] comparing Sy, Wit S, .

Passing to the comparison between means fyom different ¢l

SEeS, We
begin with the result of A. 0. Pittenger from [27]: for any ;=
we have

B =8 < r,

where, if we denote - Pr=(r--1)/3 ana Poom (P 1) Jog 9 [og » tor
P01 1 and 'y = log 2 if ¢ — L, we have s -= min (1 7)), 3 ==
=max(ry, 7) i >0 and s — min (0, #), ¢ = max (0, 1) it e =0, O
course, we get the equalif y for p— 2, 172 or

I hecause :

Sl P S o Sy =G = P,

For » .= g we have :
(6) Py < 1, « Py

which was proved by Tin in [21). Tor » — L there also follows :

(7) Po <1 < 1

Inall the cases the values of 5 and of ¢ are sharp, that is S, is nop
comparahble with Pydor s « gy l.

Patting in (6) and (7) 2 = 4 and M= we gel .

G 2Lt By <oy < I P

R, & P i1de 5319 5
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(\;-'hin'?e ;lrﬂa.ll%' lJ' = ..D" = U@, ¥); 0 < < yp or D=.D" = {(z, y);
L'-r;:qi'{lem.'lr}" ..ur)ja. ]ml.. 1::311_(_3'\,\*3_ We use the wenk comparability We’h{wé
‘Onsidered in [32]: M < W it M <y M and M’ <, M. For example, n‘

P < g we have 4, < A, G G and T
pProved (he 'l-'ollowqing' 1-91;;1.1’7((;:1?: To and H, <1, Also, in [37] we have

In [36] we have proved that :
E>A=2DP

and that ¥ is not comparable with P, for » > 5/3. We have conjectured
thal # > Py,.
In [28] using the remark (5) and putting in (7) & = e", 7 = ¢

and logarvithmating, we get : Gop <Gy a > a'y b < b

Loy < B << Rygy Gop < A, & ¢ < min (Va, 1 — V5)

Also, from (6) and (7), we have G < I, < I which gives, as above: Hva < d, <»e < min (afe, (@ + d bl + a), 1 bJd)
: o )y L—0/@).

(8) A< F < E. They are immediate the following equivalences :

Relations between generalized arithmetic, geometric and harmonie

means have been given m [37]. We remind some of them : M <M o M < M, M. <M, MM — ' <

@ﬂLAM”:ﬂ[®J[<ﬂF’MLAMU<JW,VMT

Gio <Guy =a —a =0 —0>0
| We also have :

[la,b,v,d< Ii(l-'.b'.(",d' Qa’/0< Ci’l/(/'/, b/d< b,/d/’ ((;—‘ (b—|* b)/((f +d) i

Al AT SR M(P'y, M') < M’ and (M, Py > ar.
2 UGN < A [T 11 e D)2 Finally, we remark that if we denote by :
H,peag <Ay <afe Fbld <1, e = (a — b+ d)/(c - d). D(M) = e, 9); Mz, y) = 1}
There are also inequalities of mixed type, which involve more igget}]em '8 an @ such that (#, y) € D(M) while (@, ') eD(M"), then we
means. So, in [12] B. C. Carlson proved that : e g >yt M < A

G Py, < L2, ! ,
" Yy >y for s > 1 and y « Y lor & <1if M < Wy,

This was improved by H. Alzer in [4] as oR : '
. Homoyeneity properties. Remarking that not all {he studied %

nieans are homogeneons or logarithmiec - homogeneous, that is -
i LRy R -

G-I < 12
. |
who also proved in [3] that : | Mot o) = M T L T
- & - CEOIS K 3
A-G < L-T1. J » D
. . AL s oyt ] Al ¥l It in 1287 we e definna : ) T
Using them, we have derived in [27] the inequalities : | the[mélan (Jl}lali; ecz%(fégu;dﬁfll)lﬁm%?? e g'?gl?ra,hmtlon: for a given t >0
meo § i-subh ogeneous (¢-log- : .

A4+R -F <E<?9o —A : [ subhomogeneous) if :

which ean be compared with (8).
For nonsymmetrie means, in [29} and [16] was used a compara-
P o . = . . . Y IR
bility on a subset. The means M and J’ are in relation M <, M’ if:

Mz, vy < M'(2, y) Tor (z, y)e.D

|£ Mt ty) < tM(x, ¥) (vespoctively Mzt o) < M, ).

H the -}li('-(jlul-lll'-l'(lﬁ are reversed, the mean is called /

}gslfe(,t,lx'til.y' t-Iu,t_.';-rsu[Jm'hoi.nugeneous. Of course, if I/ j

118 1/t-superhomogeneous, it
We have the following resyltg.

-Superhomogeneous,
$ t-subhomogeneous
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ERE ogesncous, then M s log-superho-
Lmssa. a) If M s t-log-subliomogencous, then

A tien 3 as tsupericomogeneons.
DY if M oas L-subhomogencous, then M & Fsug K [;/ R
: 1' M s Lsublomogencous, then M is also =510 nogaee ;
el e sl neovs-and MM ds inereasing,
O Iy M, M, M7 are t-(Log)-sublromogeneous
{ Sl Ay b LR IO
then 71'[‘( M MY s A-(Leg)-subh OMOYENCOUS.
CHe Ard. g i i B
We remark that the lemuna imposes anotlier
o i i \ Wiel CROTVEeS
synmmetric mean from g given one which presery
genoity. This can he defined by :

way ol obtaining o
the 7-log-subhomio-

B

My ) = GUM (e, ), By, @),

' neabis 2, are log-subbomo-
In 28] we have remarked that the means 7 ) [‘g;(i l ;“Im "\l\'() o
fox’ 3 <L avid F ¢ 1-subhomogencous for ¢ < 1. Al
T and I, are f-subho geneo ’ I
ceticous for @ <1 ang 17, Bops LT M
:l( proved that & is ¢-subhomogeneous and J 15 /1]()“”\ o .m?w a
For 1 o "\’/'I'O' 3 == 0.961 Using the sanie method we cq T .
ov 1 <2/ log 8= 0.961. .. Using
following more general result :

' erifies the dovble relation :
Toworewm 1. I the mean M verefies the dowd

L, <M <P,

hew At s plg — log-subhomogeneous.
Proof. The inequality (9) means that

. ' 3 ~ ; 931 /g

(@7 - y) 2017 << M2, y) < (27 + y)j2)Me,

i i firgt part a? = and 4” — 2, we get s
Putiing in the first part 2 i and g )

! 3 I ~[c
(6 4 0)[2 < Pl by,
part, for a? = "=y, we have:
Also, from Lhe second Ppart, for o =, y ;
.‘ 1o

M, oY) < (. -+ B)/2.
g inequality, « = w'” and b
Taling, in the resulting inequality, « = ¢
. =7
M(a??, beity < M2(a, D).
Analogously, we can prove:

Tronrwa 2. £ i REE
Huy << TRy

M7 /- 20US .
then 3 9s plg-subhomogencon

e 14 He o ,
de o 1 LEhTY 1 g < ) 1“ ‘ l Jl] One can {l(_)/ ne o
H h Yomgie N S| lw\\ O meats L andg - 3 Ee
"\ ; 1( FRlsnllecs (‘l\(‘ o . b3 5 e Sgtarving .[i_(”..
l | V]' }! ¢lce (0]' 1 I)l.(“l'll(‘,l S ()nﬂv] ’It;(/’,,'(]rl,‘l(” & g()l ll/l] ll) St(l 1 &4
1ot se¢ noLlee «

1y & Yoy I WO ways
two positive numbers a, and g, in ty )

( 1 ()‘1 mn--‘-l e ;"1’[(;).',/’ :1111)7 ;’/11 L ﬂ[,("}"!/l’ ://u)

= o7 it follows :

Some romard
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(-! ;) "7‘.‘/-5-1 = ‘;‘/('1‘117 :///1.)3 .]/Iz.‘l = "]‘}.,(‘T,v—]-.'i .'i/u.v)'

The fiysg algovithm iy known undey the name of Gauss thought it wag
defined by Lagrange in [L9] (for ) — 4 and M' = @), The second algo-
rithm falkes in [14] the name of Archimedeg because his Procedure for
estimating = can hoe interpretod by (11) with J7 — I and 3 — g, Bug
i iy also known as Schwab or Borchard op Plaft’s algorithm (at loast
for M —= A and y — G). As it iy pointed out in [17] the algoriihm (11)
can be deduced from (10) taking 7 A, Py for

The basic problem for thege algorithms is related t0 the cireim.
Stances in whiely the sequences (a,) and (#u) converoe 1 &common, lingi,
As follows frem the simple example given ip [LLL by A = pro and
M' = P, that 18

Fyrg == Fus Yoy = 1 "

this convergenea does 1ot ocenr without Supplementary conditiong, i
the sequences (@) and (y,) have » common lmit for any starting pointy
“0) Yoy We denote the common lmit by J?fr;:lj?rf’(.-ro, o) If we apply the
algorithm (10) and by Jf[;b_{ M (@, ye) if i is used (11). In hoth cases if;
results a mean (compound Hmean), TIf _H[[_g?f}if' (o J{[;I[_-]'I’) exists we
shall say that 7 and M are G-composible (respectively zl~cump03ible).

In [14] it wag proved that two confinyons symmefric means gre
A-composible it they have the property :

(42) M2y y) = g = g - s

In 327 we have Proved the same result Fenouncing at {he SVineiry of
means. I [317] we consider also the complex case and in [34] the case
of Jattices.

The study wasg more complicated in fhe case of G-composition, Thig
Was begun with the case of  homogeneoys means in [5], [25], F1] and
[41]. Then it wyg Proved for comparable oy Weakly comparable meang
which gre continuous and sabisty (12), in [29], [16], [42] and [32 J. In
[38] we renounced af comparability = fop Syminetric means, Thig was
done by using the means Jy AM" and My and the doyhle sequence
senerated by them, The proof is so very simple. With g more sophisticad-
ed method the result wag Proved for nonsymmetric megng in [17].
Thus, if M ang M are continuous meang with the Property (12) then
.Ml g 'M' exigts, In [39] we have also renounced at thege broperties for
one of the two means. We sketceh heye the proot of thig resulf,

Tiroruwm 3, If one of the means and M’ gy continuons  qnd
satisfies (12) anq

(13) M2, y) =y = g = .

then M

Efﬁf " ewists.



10
Gh. Toader .
106 —

‘ iven by
vs that 8 nces (v,) and (y,) give

Do n 1) follows that th§> ugque B RS

(10) 11{3?%1(;0{].1(3j gg}%}eé iiltervalI determme(bl)})r rgfr(i élm&gol.mg{s oo Do B
Veierst sor there is a sequence (#,) 2 i

Weierstrass theorem,
such that : . sl
| i = M P = &', 1 yuy 1
lim o, = @, }ng Ynp =, klgg g )

ko0
k- oo

3 ’ a5 1 = JI Ly :7/11 J) a;nd ;2/71154. ==
"Then x = #. Indeed, if we suppose &<y, a8 T+ (@ gy Yny
= M'(@ug, Yng), it follows that :

’

N

TS <Y, <Y <Y

We) prove that : pie ot SR 1
(14 R o [ e K = 1(, such
B o<a <y <y, we choose 0 <7r < (2 — @)/2 anc

1 & <C = =

that : lww.+1 o w/l <7 and |‘1/nk+1 — Y | < 7.

PR Tugtr > &' — 7 > (2" - 2)/2

and Yuptr >y — 7 > (@' + @)/2.

Rk z, > (@ + @)2 >, Yo >K

18 ;

k—oo
ich A% G
. ’ we obtain a similar contradiction by choosing
v <y <o <y
0 <r<(y— )2 ) .
N Analogously we can prove that:
15) y=wzory =y
(15
held.

1t inuity of - 3 we
It M satisfies (12) and (13), from (14) and the continuity o
Savlf C .
i v = Mz, y) or y = M(w, y)
' ‘ 5).

18 @ = y. It M’ satisfies (12) and (13) we use (15) e

i ?Dh_e hypoi;hesis x > y gives analogously » = y. :
Hm @, = lm gy, =

oo k-r00
i eads to: ! : =
which 1 lim 2, = lim ¥, = 2.

N—-00 N—CO

C OS¢ eve 1

like : ‘ fiin (z, ) it 2 < @
Mz, y) = max(x, y) if £> .

11 .‘§0111e iemarks On means
e ————— e - e IedS == 1 I e

107

AS concerng the vesuly of 7

he composition, we reming here some
results. The most known is the

arithmet;io—geometric mean of Gaygs :
/2
1 2 T, P o AR
3 g (@5 cosl 4 43 SIN )Lz ¢
T
0

Al g6 (w4, )
It is also Proved (see [137) that ;

(y5 — wp)lre

) > Tg <T Wy
1 are cos(@g/y,)
4l a ’Gfmm Yo) =
(@6 — y5)'r2 i
=T i To 2> Y.

S
arch (az,/y,)

In 327 we Proved  that .

Alald, =4, @ RlG =G, m) W, = 1 igh e e

— P+ pg)
hold and

Apl E{j’Aq = A, G,,!EIG,, ==, 1—[7,/}5,‘71,, =1, where s - Q1 —p + ¢
It is easy to see that :

4 7”’7gi/'11.1 -p =G

and in 7] it iy also remarked that -
Plelp., ~ .

Generally it ig difticult to fing the compound mean,
Song made g conjecture for Ap,'g\/Gp (see [23]) but it was invalidated by
J. Wimp in [42]

For instance, G.D.

As concerns the relation between the ecompound m eans, we have the
result ; !

LeMyA, IF and M’ gre tnereasiy then .
. g,

Hlglm < Mlaln,

We can apply it to deduce relation

5 among the above pairs of
means. Of coyr

se, the most Interesting regult Iy :
Alg}e < afalo.
(Try to prove it directly !).

The rate of convergence of the sequences to the eommon limit wag
also studied for example in [15], [16], [17] ana [33].
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