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L Intreduetion, Pseudomonotonie and quasimonotonic program-
ming has been extensively studied during last two decades. In [9] and
[10] Martos shows that it the objective function is pseudomonotonic gnd
the feasible set is a polyhedral convex set, then an optimal solution for
this nonlineay Programming problem, it it exists, can be found ab a vertex
of the feasible sef gnq that the simplex procedure ean be modified to
solve sueh problems.

Kucher [8] presents another simplex brocednre, whieh converges
in a finite nymber of terations when the objective (uasimonotonic fune-
tion g supposed to be an indefinige differentiablo function, Bector et al
[1], [2], [3], Bhatt [4], Mond [11] and Tigan [13], [15] give another
procedures for solving such problems, which may be also used in the
case of nonconvex feasible get.

Tigan [14] proposed a decomposition algorithm for quasimonotonic
programing. Also, Tigan [16] studied certain quasimonotonic max-min
Problems with linked linear congtraings.

Finally, Mond [11] congidered a dual to the pseudomonotonic pro-
gramming problem and obtained some weak and strong duality results.

On the other hand, Dantzig [5] developed g simplex type algorithm
for' generalized linggr Programming  and Thuente [12] obtained some
duality resulfs fop thiy problem.

The' purpose of this paper is 1o develop some duality results for
pseudomonotonie programming with generalized linear constrainig.,

2. Dofinitions. nod preliminacies. Fn thig secbion we will briefly
Summarize some basic definitiong and Properties of the clags of Ppseudo-
monotonic functions which are nonlinear and — beyond this — nonecon-
cave,

DEPINTTION 1, A function f from p < R* into R(f:D > R) is
said to be pseudo-convex if

(¥ — @) v f(&) >0 =flg) — f(=) > o,

where Vf is the gradient vector whoge components are the partial depi-
vatives of f and 1 ig 5 convex get, i
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DerINeeioN: 2. The function [ is psendo-concave it —f is psendo-
CONVCX.

DRRFINIIION 3. A function f that is both pseudo-convex aud pseudo-
concave is called pseudo-monotontc.

Obviously, linear functions form the most important subelass of
these, generally, nonlinear nonconeave (nonconvex) functions. A more
general subclass of pseudomonotonic functions is that of the linear
fractional functions with positive nominator on a given subset in I3*
{cf. e.g. Martos [10]).

Other types of pseudomonotenic functions, which are not linear-
fractional, were considered, for instance, by Mond [11], Tigan [15],
Bector and Jolly [3].

Now, let X be a nonempty subset of . We congider the following
pseudomonotonic eptimization problem.

PM. Maximize f(z) subject to x e X .

A useful linearization property, of the psendomonotonic funetions,
obtained by Kortanek and Wvang [7] in the particular case of the con-
vex feasible set X, is the following :

Trrorwi 1. (Tigan [15]) Let f be a continuously differentiable psei-
domonotanic function and the convex set D and let X be a closed bounded
nonvotd subset of D. Then &' in X is an optimal solution of the problem
PM f and only if @' is an optimal solution for the Jollowing linearized
programmming problem :

P(x’). Maximize Vf(x')@, subject to = e X,

The Theorem 2 below follows directly from {he quasiconvexity
broperty of the pseudomonotonic functions (see, for instance [6], . 27
(ix), pp. 29—30).

THEOREM 2. Let f be a pseudomonotonic function on D and let zé
@' be in X, If Tf(x)a' < f(@') &' then f(a') < f(z").

Theoremy 1 and 2 suggest that maximizing a pseudomonotonie
function over a closed bounded set is equivalent to maximizing some
linear functions over the same set.

We mention that Theorems 1 and 2 are employed to justify . the
convergence (finite or infinite) of the linearization procedures given in
[15] for pseudomonotonic programming with a nonconvex feasible set.

3. Bual problems. In the sequel, we consider the following pseudo-
monotonic programming problem with generalized linear consfraints :

P. Maximize f(z) subject to :
(1) Tty + oo A Xl < b, 25 20, jel = {1, 2,...,n},
(2) “J‘eKﬁ’jeI7

where I, (j € I) are convex hounded subsets in 3" and f is a pseudomo-
notonic function (see, Definition 3) over a convex set .D (in R®) which
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cludes the set X of gl pointy @ —
constraints (1) for some aje l;(jel),
In problem P, 2 a5 we j € 1
o SR e Al as a; -} are veelors of decisi rarial
o ;n )(};)111;1:1{11 :m(.)sh\l\t(j})]l'w af(;} el)a tors of decision ariables,
; Yy LI G b 8 ) ‘onlem P g . i 4 v '
* e X and 475 the m‘arrix hlfw(i)ﬁ()' 1;111(()31)(1(‘]11L o 0 G ) o Do
. . ; v AN NG A6 ¢ S o j for whi J
S g otumns a; (jel) for which the
We associate to problem p
near coustraints :
DP. Minimize Je) subject to

(Z15- . ,2,) In R, which verily the

the following dyal problem with nonli-

(3) Wiy = —O—r], for any «; e I, Jjel,

wyf(u) > by, y > 0,

| eap, " . : +]
W huer 30 €R"and y e B" are dual decision variable vectors
The problem pp represents a gener

b ) : alization of Mond’s 117 ¢
Tor usual bseudomonotonic programiming, (B dual

ENEOREM 8. (Weak duality) If f 4
' 3. uality) I 18 pseudomonolo nic
Jeasible solution (y A) of P cmgl) sl

tnequality J(®) < fou) holds.

2 + Y -
Lroof. From (1) and y = 0, we have :

s . then for an;
wny feasible solution, (%, u) of W, 'l?/z,'é

(5) v < yb, for yome ayell; (jel),

and from (3) and g 2 0, it follows that -

(6) a'Aly > 2'7 f(u), for all ay e ll; (jel).

But then, for some a; e,

imply : (J 1), the constraints (3) and (6)

yb 2z @' Vf (u),

Where, by (4), it results from .

W) = yb > o' fu)
that :

(7) (@ — u) Vfu) < 0.

Sinee f is pseudomonotonie, it i
ojR e i f(1;), onig, it ig bseudoconvex, so th

B ;la;;,sEt(;RfEM [i;n (Strong duah'ty)o If «° is an optimal solution for P, then
Vi ogets Yy ek such that (y, a°) is an oplimal solution Jor DP cm’d the
prvmat values of primal and dual problems gre equal,

at (7) implies
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£ pti solution for P if and only
' . 'em 1, ¢° is an optimal solution ) .
’roof. By Theorem 1, & is an of al sol i g
if it il ”r)lof(;'])ti%nal solution for the generalized linear programming p
i it is an opt ;
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min by
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Irom Thuente’s duality results [12], for every optimal g
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hat (y’, 2°) is an optimal
feasible solution (y, u) of .DP. 1t vesults that (¥, 2°) is an optima
for any feasible s q

solution for DL,

it n 3], [4] and [15] algorithms for
i ization algorithm. In [3], [4] "and [15] alg
4. Linearization algorithm. In [ - e ot
ol dns- optin;iza,tion problems with l}sey(lOmOI]Oiion}?oﬁbJigperties o
M). Vdichuwed. These approaches use nice hnearézgc- i Iénd e
,<u1211(1(;1n01i0t0nic Junetions (see, Theorems 1 an -\v)hi‘(uh vcan b,e F gon:
sz polyhedral feasible set, at linear programs whic.
-\v 5 " . . A N - <
employing simplicial algorithms. l e
S i 7 envisages to fi y finite se-
The linearization alogorithm below enz 1§ag$1?1112% e;-lrgf zz‘enerahzed
e of feasil i by solving a certain numbe of generalized
tence of feasible points, by s g & certain Lot SRptn ed
iluzglf'jtproomms The last point 2’ e X' in this sequence is a p
inees Sl . x
‘hich Theorem 1 holds. e iration Ittt
! hH}h’J‘%ﬁEfbl0‘01‘ithm represents an ajpp.llea'tlonj ofj thjf;n il}l}ne:;ilé? genera,iz—
ithm é‘i\;ell ?n [15] to the pseudomonoctonic program o
vithm g ‘ c
ed linear constraints (problem P).

Algerithw.

1 == O.

Generalized pyge

udomonotonic Rrogramming

Step 2. Solve the generalized lineg,y program

ZJ({U"). Tind
Se == max v f(a) g

subject to phe constraints (1) and (20
Liet (@41, AT be an optimal solution of the problem P(a'), whieh
15 obtained hy the generalized lineay programming simplex algovithm 5

[h.
Step 3. () IF the inequnlity

) o <,
holds, then 80 fo Step 2 with ¢ replaced by v,
() 1 (e - 8. stop. By Theorem L,

_ ‘ : (@', A" is an optinial
solution for broblem p,

We have the following result conecerning the finige convergenge of
the linearization algorithm for

generalized psend omonotonic programmin Q.

Theorma 5. If Wi(jel) are convex nonvoid bounded polyhedral syp-
sets in 8", then the lEnearization, algorithm for generalized pseudomonotonic
program P finishes afier o Jintte nomber of tterations.

Proof. Since the feasible set of Problem P can he tran
@ convex polyhedral set, having a  finit
tiicorem resylis eq

sformed into
¢ number of extremal points, the
sily by Theorem 7 from [15].

3. Conelusinng, Ty this paper we considered
pseudomonotonie prograinming with genergliy

Twao duality rvesults are obtained. In order to prove fthe “strong
duality theorem’ s 1i; \earization resulf, for psendomonotonie pProgramming
and the duality Property of generalized Linear programming are msed.

The strong duality theorem shows that g Psendomonotonie program
With nonlinear congt aints, namely the dyal problem DP, can he solved
by means of the linearization algorithm (see, seetion 4) applied to the
primal  problem 2

a Mond type dual for
ed linear constraints.,
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