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ON A BICRITERION MAX-MIN FRACTIONAL PROBLEM

5. TIGAN and 1. AL STANCU-MINASTAN
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Lo Introduction. Tn thig paper we consider & max-min’ bicriterion
fractional problem with separate linear constraints. We prove that this
problem  can be transformed into a bicriterion fracfional maxins-
zaltion problem.

For this last type of nonlinear program, Warburton [157] described
@ Iinite procedure which consisty in solving g ohe-parameter linear pro-
rram and a series of one-dimengional maximizations.

Another approach to the general multiobjective linear-t ractional
programing was presented by Weber [16]. He considered an interactive
procedure for the pseudomonotonic multiobjective Programming, to
obtain an efficient solution which satisfies some decigion maker's prefer-
LNees,

Our algorithm for the bicriterion max-min fractional problem con-
sists iv applying Warburton’s procedure to solve a certain bicriterion
fractional maximization Program,

CUoncerning the bicriterion maximization problem, we mention that
Greoffrion [6] studied a bicriterion mathematical program of {he form :

Po. max {U(f,(a), fof@)): we 8},

where f) and f, arve real-valued concave criterion functions of the n-vector
# of deeision variables that are constrained to lie in a convex subset &
of 1", and U iy a real-valued increasing (i.e., monotone nondecreasing in
each argument) ordinal utility indicator function defined on the set

J8) = {(fu(w), fo(@)) : w e S},

He suggested a method for solving problem Po based on any
known parametric brogramming algorithm for the Pbarametric subpro-
blem :

max {afy(x) 4 (1= o) fu@):awe S},

where the parameter « varies over the unit interval (0 < « < 1).

Warburton [15] describes algo a procedure for solving problem Po
having the objective functiong J1 and f, as linear fractional functions, §
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a compact polyhedral set and U a real-valued utility function, nonde-
creasing in f; and f, and continuous on the set f(.5).

We mention that this problem does not always verify the concavity
assumption for f; and f, considered by Geotfrion [6]. Hence, the frac-
tional bicriterion Warburton’s problem orvdinarily is not a particular case
of the problem considered by Geofirion.

Applying some results from [6] and [3], Warburton showed how
Lhe problem Po can be reduced to a one-parameter linear prograin and a
finite set of one-dimensional subproblems.

A special case of o iy also considered in [15]:

(1.1) Utfia), fofw)) = @) - ¢ fifa),

where ¢’ and o’ are real nonnegative numbers.

Ritter [8] gave an algorithm for the special case of (L.1) m which
the objective is to maximize the swum of a linear and a linear-fractional
tfunction.

The purpose of this paper is to show how Warburton's procedure
can be applied to solve a more general case ot PPo, namely, a bicriterion
max-min fractional problem with non-joint polyhedral constraints. The
plan of the paper is as follows. Section 2 contains the problem formulation
and some general assumptions. The transformation of the max-min pro-
blem into usuai maximization program is given in section 3. In the next
section, an algorithm for solving the max-min fractional bicriterion pro-
blem is given.

2. Problem formulation. The max-min problem under consideration
is of the form : . Iind
Vose max min (I (), @Qe, 1)),
re liye¥

where X < " and Y < E™ are two compact convex polyhedral given
sets, h: D — R(D < R* is a real-valued function nondecreasing and
continuous on the set

D — {F(), Qo 9): weX, ye¥l,

and 1 : X - B, Q: X XY — I are fractional functions of the form. :

(2.1) Fg) = ————s @ e X,

w0y + ey + go

» xelX, yel,
da v

(2.2) Qa, y) =

This problem has an important application in modeling varions
confliect wituations.

In (2.1) and (2.2), C'is a given # X m real matrix, eeR", ¢, f,c e R”
and p, ¢, ¢ are given real numbers.

—

related to problem P have been. realized in refs

inohotonic max-min problems 1
Lo max-min problems under
fractional objective funection
[4], Staneu-Minasi i

i | asian and Tigan (107, 1117 a i
fractional max-min probler S i B e

};>1'obleﬁm L can be v
form Po (problem Py given below).

LA s, _Qn a Ecﬂer_ion_{na_x-min fractional probiem 119

Without loss of gener
sets X and 1" of bhe formn -

(2.3)

ality, in what follows, we cousider the feasible

X={zeh": Av<a, v > 0},

2./_L d o ;
(2.4) T={yeR": By<v, y > 0,

where 4 is an s x n veal matrix, B is g &

jai] X m realmatrix, ¢ e R* and

DEFINITION L1 A point (z'. 4) i - N
solution for problem P, ilfO:mt (@, ¥')in XxY ig

) RE(@), Q@' y) =V,

Wmin WE@), Q@' 9) = ME(’), §(a', 1))

() n ['LHICLIOHS .Z d/ll(]. we 1mag ke }le 1()1] WInge ¢ s ]1}) 101
)
Q, I 1J - (6] & ass1 L ons :

sald to be optimal

Jo 4-¢> 0, forall zin A
DI
(2.6) do + r> 0, for all gz in X.

"M"va g “
f‘rw[‘j 1‘]1(,1 1){0?1@11 I represents a generalization of ¢
f,]““ 1onal programming problem considered by War
the case when € = 0 and ¢ — 0

) - {1 a
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Lowyva 310 If b 4 )
A 3L If b ds continuous and nondecreasing on D, then :

MaX min /
jlax min WE(@), Q(z, y)) = max A(F(a), mip Qw, y)).
yEN;

Lroof. Denote

G(x) = ryn€111/1 Q(x, y), for all » in X,
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Since k is a continuous and nondecreasing function on D, for every
@ in X, we have:
min W(I(@),Q (2, ¥)) == I (%), min Q(z, y)),
3

PSS ey
s0, it follows that:
max min h(f(a),Q(x, y)) = max L(F(a), ((x)).

reX yey reX

Consequently, by Lenuna 3.1, the problem P can be reduced to
the following bicriterion maximization problem :

PJ. Find
(3.1) V1 =max h(IF(a), (x)).

veXN

Obviously, V = V7 and it (¢, ') is an optimal solution for P, then
#" is an optimal solution for PI. =

In dealing with problem 7 we can consider the solution for the
bicriterion Pareto problem with the objective functions F and 6 over
the feasible set X .

DEFINITION 3.1 A point & in X is said to be Pareto optimal, if
@' e X and F(a') 2F(a"), G(2') 2G(¢”') implies that I(x') = F(z’') and
G(x') = G(a").

Let K denote the set of Pareto optimal points in X .

The problem P71 is closely related to the following problem :

P2, Find

@ 120, » min (zCy - tey 4 gz))

V2 = max h|-
24 qt yey

(#h ez
where
Z={t)elr": Az —at< 0, dz -} 1t =1, 2> 0, t> 0O},
Turowsnm 3.1 (1) If (2,0) € Z, then t > 0.
(1) If (', t') is an optimal solution for P2, then o = 2'[t’ is an
optimal solution for P1.

(iti) If @' is an optimal solulion for problem P1, then (

! 1
da’--r dx’—}—?')
s an optimal solulion for P2.

(1v) The optimal values of prodblems P1 and P2 are equal, t.e. V1 =
= Ve.

Proof. The assertion (i) can be easily obtained by a similar argu-
ment as those used by Charnes-Cooper [2] for usual linear fractional
programming. The properties (ii), (iii) and (iv) can be easily proved, by
performing the variable change 2 = ¢ in problem P1. We mention that
by this change of variable the problem P7 is transformed into the equi-
valent problem PZ2.

Now we consider the following problem related to problem P2 :

FP3. Rind

I_ 4
(3.2) V3=maxh (Cz——'ﬂ s g8 — bu)
z,0,0 fz —I— qt

9. On a l)ig’rirlreri(m Jn_ax-‘min__fr_aclio,nal_pl'oblg_np = 121
subject {o . .
{3.3) Az — at < 0,

(3.4) dz + 1t = 1,

(3.5) —ubB < 20 le,

(3.6) £20,120,u >0,

’ a -(> R AN B 3L » .

e QV,LJ)(/;—;,O;(;"J)/E\’»» ,l the 1eav.51b‘1_e set of problem 3, ie., the st of poin ks
Wy 6 ) L7451 whieh verify the constraints (3.3) — (3.6). 2
t.';“"”‘fl“l 3.2, If bis continwous and nondecreasing on D, then,

1) prodlems P2 and P3 hane 1) , : ) A

(“}]T s l :lj)ldl 3 have the same optimal values, that s 179 —. 3.
WAy (=5 U ') dis an optimal solution for ; X 2
o NS ) A , ' Hamal solution P23 i B
optimal solution for P2 n for P3, then (&, t') 4s an
(Y AF (2", 3) 48 g enifiind sutoting £ 1o )
ssicl Dt {N.{ {!’ ] ) s - oplimal solution for P2, then there exisls w' >0
W (2 Uy w') ds an optimal solution for P3. O
Iiu d CElp- - "
Proof. Indeed, for ey ery (2, t) € Z, the problem

M(z, t) = min (Cy + tey +- g2)
i yey ' '
v [b) 1]1)nezﬁ )1)110g11fm}n. Smce ¥ Is a nonempty compact set of the form
“7%), DY the duality property of linear prograinming, it follows that:

M(z, 1) = max {gz S
(=, 1) mﬂax W7 — b —uB < 20 4 tey, wz 0.

Consequently, for g ir ]
sequently, for every (3, 1) in Z, we have :

; ) 2 - wt
(3.7) A (vcz"f.]? i (2Cr tF . cs - pt

(W + qt ’ Il]é_l,“ (”(-[/ tey+ ga)} = h ’*""*"'[ff, max (gz_(m))
where : ' Jet gt weses

S”,, A L= 1 ko, o) p
52, t) = {ueRr: — up <204 te, u > 0}, for all (2, ¢) in 7.

Sinee 7 is continuous and nondecreasing, it results thad .

hitt . [C% 4 pt
(3.8) & ( T max (gs | o Rl
» max (gz — b)) = max j [P
Jz - qt HE S5, ) € S(z,4) : fz 4 qt 3T S
for all (z, t) in Z. |
From (3.7) and (3.8), it follows i 1i '
" ‘rom (3.7) s .8), ollows imrediately at the properties (i
{il) and (iii) of the theorem hold. s pReprtier ()
m e AL Fo T , 0
g mrﬂ_‘l_ere:_im G, }i’\t Lemma 3.1 and Theorems 3.1 and 3.92. it follows that
;pz"obvhf:ﬁ 1 Ililfn‘y:& b ﬁ:“ P can 1)0 reduced (o a bicriterion linear fra,c‘iioﬁ(fﬂ’
voblem P3 wi lear constraints, to which Watburton’s ey rics
Procedure [15] can be applied. ’ SRIDIEICLE Barmileis al

?



129 1y S _'Iigan and 1, M_: Stancu-Minasian it Y

4. The algorithm. In  this section, we deseribed an algorithm oy
M ¥al
solving the problem P. ' T
Under agsumptions (2.5) and (2.6) and beeause X and ¥ are nonennp-
ty compact sets, the following values are well-detined

. ¢z - pt
4.1 J1 == max { ~~~~~~~~~~~~~~ s, ) eZ},
- l fo -+ qt
(4.2) Ji = max {gz — bu : (2, t,u) e I},

' 02+ pt E W b
(4.3) i’ = max {»pzjgp;: (2 1) eZ, g2 — bu > jz} s
Tz + qt
[ ez -+ pt

e 7' — mayx 2 s (2t =S R = ‘
(:L.1) f2 = max 1(/ bu : (2, t,u) e T, ol d /1}

Denote by I’ the Pareto optimal solutions over 7.
From (4.1) -- (4.3), it is obvious that :

[T
et e

whenever (2, t,u) e k', ! il 8 0 Ry
For each w in the interval [fy fil, consider the problem :
Pw). Find

cz - pit
T(w) =max {gz — bu: (2, t,u)e T, L0 S
V(w) = max {_f/ o (2, £, ) ; Wl g

Further the following results are useful to Justily the algovithm |,

Leaoyia 4.1 (/8/, [15)) If (2, ', w') e B, then there cawists L{‘(,} %mhu
w e[l filsuch that (2, 1, ) solves P(w). Conversely, each optimal solution
of problem P(w) for w e [f!’, fi] is Pareto optimal,

Livvia 4.2 (/6/) If the assumptions of Lemma 3.1 hold, then )lhe,‘ve
ewists an optimal solution (', t'sw'), of problem P3, such that it is Parelo
optimal, . R

From Lemmas 4.1 and 4.2, it follows that :

Lennia 4.3 Tf the assumptions of Lemma 3.1 hold, then an optimal
solwtion of P3 may be found among the solutions of P(w) over the interval
s w '] . ‘ i
1T Sil\lé(v (2.5) holds, the problem P(w) may be rewritien : P(w). Iind

~ B v

Viw) == max {gz — bu: (2, t,u)e T, cz - pt = w(fz - qb)).
Then, the solution of P(w) for fi’ < w < Si u(z‘(:ol'(,llng_(}o “ Mbi”"t(m] )\
procedure [15], leads to the following algorithm for solving problem /2,

Step 1. Solve the problems (4.1), (4.2) and (4.3) to obtain Ji I
and .

On a bicriterion max-min [ractional problem 12

| S

) Step 2. Apply row Parametric procedure to {he linear program
L) for f)" < w < Jiy to obtain critical values

=< w< . < =g

aid the corvespoding points Z/ = (o, U, w’) solving Pw,).

Step. 3. Solve »’ one-dimensional subproblems defined by :
&, Find
[

W == max WH(Z)): Z e 4, |, Zilhy

for 1 <

<1< 'y where by Z - 2,1, @) we denote g current Teasible soly-
tion of 1

7 (
L3 and by 1 - R2 the Tunetion :

: x| ol . )
H(z, t,u) = (; - 1_79)?’ gz - {)u.), fovall (=, ¢,4) in 7.

Let Z], for 1 < i< 7, be the corresponding optimal solution of (428

Step 4. Tind j e {1, 2y, 1"} such that :
MH(ZY)) = max {W,:1 <4< »h

. Then 7' == 7} is an optimal solution for P& Tet 77— (o, tyou)
denote this optimal solution.

Step 3. Take o' = #'ft', which, according to Theorem 3., is an
optimal solution for problent Py,

Step 6. Solve (he following linear brogram :

a'ly ey L g
mimn Yooy tg

vey de’ 4 »

Let y' De an optimal solation for bhis linear progran. Then (®'y w')
s an optimal solution for problem, P, and the algorithm stops,

A s known, by Charnes-Cooper transformation [2], problems (4.1)
and (4.3) in Step 1 are equivalent to linegr programs. In Step 2, aw,
oceurs at the i-th basiy change in the parametric solution of P(w). The
Slep 3 s justified by Theorem 1 from [15] and Lemma 4.3, while Step
4 s waranted by Theorem 3.1 and Step 5 by Lemma 3.1 (see also
Definitions 1.1 and 3. 1)

Ninee i iy o nondecreaging funetion y it results that for every (2, 1, ")
ey we have g - It in B and conversely,

B Couclusions, In (lis paper we presented an application of War-
burton’s parametric procedure for solving the max-rain fractional pro-
blem P,
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Although problem P is nonlinear and noneonvex, it iy possible to
obtain an optimal solution, and hence a Pareto optimal point for the
corresponding bieriterion problem (see, Definition 3.1) by a rather simple
algorithm. This algorithmn uges only one-dimensional parametric linear
programming techniques and one-dimensional nonlinear maximization
Procedures. Moreover, in the initial and fingl steps only linear fractional
or linear programs must be solved.

Another bicriterion max-min fractional problem, related (o pro-
blem P, is the following problem ;

2. Find

I = max mimn 4
1eX ey

. - -

( B R 0N ey iiﬂm)
Jz4q oy + B

where by ¢, p, [, q, €, ¢, g has the same meaning as in - the problem P and
we " oe k2.

A similar parametrieal approach to those for problem # can be
used for solving the problem P,

We mention also that Fujishige, Katoh and Tchimori [177] have
been congidered a somewhat similar min-max problem with  discred
submodular  constraings,
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