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We consider set-valued functions defined on a compact [lausdor{f topological space and with
enmpact convex values in a Fréchet space; we give some condifions which ensure that a set
of sct-valued funclions is a Korovkin set with respeet Lo cquicontinuous nets of monotone
linear operatlors.

Introduetion. In some recent papers [21, [3], [4] and [6] the interest
of Korovkin-type approximation theory has been extended to linear
operators on set-valued function cones, motivated by the variety of
circumstances in which set-valued funections are involved, such as opti-
mal control theory, mathematical economics and probability theory.

In a precursory study of Vitale [6], the approximation of Haus-
dorff continuous set-valued functions with compact convex values in a
finite dimensional normed space has been discussed by means of Bern-
stein polynomials on the compact real interval [0,1].

Atterwards, Keimel and Roth have established in [3] a Korovkin-
type theorem for set-valued Hausdorff continuous functions by means ot
Korovkin positive systems for single-valued real functions; the same
theoremn has been improved in [2] by using suaitable upper and lower
envelopes.

Finally, Keimel and Roth in [4] have developed an abstract
formulation of some locally convex topologies on ordered cones by intro-
ducing a notion of (upper, lower) continuity which constitutes the sub-
stitute of the Hausdorff continuity in normed spaces ; their results gene-
ralize approximation processes to the case of infinite-dimensional locally
convex topological spaces.

In this paper we are interested in the Korovkin-type approximation
of set-valued functions with compact convex values in Fréchet spaces ;
this setting is not the most general as considered in [4] but provides
us some tools of selection theory which will play a crucial réle in achiev-
ing the main result. Moreover, the Korovkin-{ype theorem obtained is
not expressed in terms of Korovkin systems for single-valued real func-
tiong ag in [4].
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In the second part of this paper, we shall consider single-valued
continuous functions with values in a Kréchet space and we shall study
the convergence of equicontinuous nets of operators satisfying suitable
conditions ; as a consequence, we obtain a natural generalization of the
well-known case of real valued functions.

1. Preliminaries and notation. In this Section we recall some preli-
minary definitions and some classical results on selection theory which
will be used in the sequel.

All the vector spaces under consideration have to be considered
over the field R of real numbers.

We begin by fixing a locally convex Hausdortf topological space H
and a base B of convex open neighborhoods of 0 in F; moreover, we
denote by @ornc (If) the cone of all non empty convex subsets of H,
endowed with the natural addition and multiplication by positive scalars
and, by GFcnv(ll) the set of all non empty compact convex subsets
of 1. ;

Liet X Dbe a topological space; if f:X — Gown(H) i3 a set-valued
funetion on X, we recall that a (continuous) selection of f is a (con-
tinuous) function ¢ :X - B satisfying o(z) e f(z) for all v e X.

Moreover, the following mnotations will be useful in the sequel;
(X, E) denofes the space of all continuous functions on ¥ with values
in ¥ endowed with the topology of the uniform convergence; if fi,...,f,
are set-valued functions on X, we consider the sel-valued function
©0(fy,- - -, fx) defined by putting, for each & e X, co (fi,..,f.)(x) = co (fi(@),

. fa(@)), where co(fi(2), ..., f.(x)) denotes the convex hulloffi(z)u ...
... Ufa(®); moreover, it o € (X, II), {o} denotes the set-valued function
defined by putting, for each w e X, {o}(2) = {o(2)} and finally,if ¢,...,0,
are in 4(X, If), we simply write co(ey,. ..,0,) ingtead of co ({o},. . y{eal)-

The following preliminary result is well-known and can be easily
derived from [5, Lemma 4.1 and Theorem 3.2”7].

Prorostrion 1.1. If X 4s @ paracompact Hausdorff space and E is a
Eréchet space, then each lower semicontinuous set-valued function admits a
continuous selection.

Moreover, if f:X — €Conv(l)) is a lower semicontinuous set-valued
Sfumction and if A is a closed subset of X and y:4 — F is a continuous
selection of [, then 3 can'be extended to a continuous selection of f; in
particular, if ©oe X and y, e f(x,y), there exists a continuous selectron of f
which talies the value y, at v,

Let X be a paracompact Hausdortf space and ¥ a Fréchet space. If
X - €%onv(l) is a lower semicontinuous set-valued function, in the
sequel we shall denote by Z</(f) the (non empty) convex set of all con-
tinuous 'selections of f; by virtue of the preceding Proposition 1.1 we
have, for each 2 e X, i

(1.1) @) = U {o(2)}.

ee L)

Moreover, the following lemma will be useful in the following
Sections.
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00 Leyya 1.2, Let X be a paracompact Hausdorff space and B a
Lrwhgt space. If f, 9:X — CConv(H) are lower semicontinuous set-valued
function and » e R, it results

(1.2) Fel(f -+ g) = LL(f) + SL(g),
(1.3) Lt (M) = 1FeL(F).

Proof. We have only to show the inclugion & «/( f4g) S (f)+F L),
the other being trivial. To this end, fix ¢ e Fel(f4g) and let (V,)uem be
& sequence of convex closed sets in K which is a base of neighborhoods of
0 :satlsfymg Vity = 27"V, for each n e N. By induction, we show the
existence of a sequence (¢,).en of continuous selections of f and a sequence
(%n)uem of continuous selections of ¢ such that, for each «e X,

(14) "I)'"’F 1(.’17) € L‘]‘J"(‘I;I"') + V"? XrH'l(m) S Zrl("»v)#_]:f,;,
and
(]5) (P(‘/L) 14 L]J,,,(.'T/') i X‘]l(m) e l,.

Put fo = f and g, = ¢; if e X, we have o(z)ef(2) - g(x) and
thi-_‘.l'el'o_re} there exist yef(x) and zeg(z) such that gplm) = -f;‘+ z; by
Proposition 1.1 there exist 4, e #« (f) and 1o € el (g) satisfying Ye(@) =y
and y; (@) = z; it follows the exigtence of an open neighborhood N(2) of
@ such that o(l) — $u(?) — 7.(t) e V, for each t e N(z). Since .\ iy para-
compact there existsalocally finite continuous partition of unity (p.)ser
on & subordinated to (N(@)).cx. For each e X, let I(z) be the finite set
of all teX such that p(w) > 0. Then the funciions ,: X — H and
%o: X =B defined by putting '

bo(@) = 3 @) $o(@);  yolw) = Z Pl @) 2 ()
- ter(x) tel )

foreach x e X ; are continuous selections of f and respectively g. Moreover
Yo and yo satisfy condition (1.5). Now, suppose that U, and y, satisfy con-
ditions (1.4) and (1.5) and consider the set-valued functions f,,;l : X 5CC any
(B) and gy4y 2 X —> € one(B) defined by putting, foreach ¢ e X, f,. (@)=
=f(z) n (_4.-,_,,(.'::) + Va) and gu.q(a) = g(@) 0 (ya(e) + Va); by virtue of
[5, Propositions 2.3 and 2.57, fu+, and g,., are lower semicontinuous and
consequently we can apply the preceding argument to show the existence
of continuous selections g,y of fu+; and y,.; of gus, satistying o(z) —
—Unt1 () — xu1(¥) € Vi for each @e X. By the definitions of Sfrrr and
Inray Ynry and yaeqy satisfy also condition (1.4).

By (1.4), the-sequences (¢,)i:m and (y.)ien satisfy the Cauchy
eondition with respect to the uniform topology in %(X, E) and therefore
they uniformly converge to continuous functions ¢: ¥ — I and respec-
tively y:X — B ; it follows that ¢ and y are continuous selections of f
and respectively ¢ and ¢ = ¢ -|- y(ef. (1.5)).

In the following Section, we shall consider set-valued funetions
both lower and upper semicontinuous and we shall indicate these set-
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-valued functions simply as continuous functions. The cone of all con-
tinnous set-valuned functions from a topological space X in €Gonwv(H)
will be denoted by F(X, €Conv(H)).

The cone (X, €%sue(l)) is cquipped with the topology of the
uniform convergence ; namely we shall say that a net (f,)es of set-valued
functions from X to €€ e (E) converges to a set-valued function f:X —
— €Conuv(R), if, for each V e B, there exists e« e ! such that

flw) « fu@) -+ V, fle) < flz) + V for each rxe X and v > «.

In [4], Keimel and Roth have introduced the symmetric topology
on Fonv(l) by considering the family

({Be@omv@B) |BcA+V,Adc B+ Ve

as a neighborhood base of an arbitrary element A4 e Gornv ().

Since we shall restrict our attention to set-valued functions with
values, in the subcone €%onv(l) of €onv(ll), in this case the continuous
set-valued funetions coincide with the set-valued functions which are
continnous with respect to the symmetric topology (cf., e.g., [1,Corollary
1, p. 67]); consequently, the notation %(X,€Convl)) is consistent with
that one used by Keimel and Roth and a set-valued function f:X —
—>@% onv(ll)is continuous if and only if, foreach V % and v, e X, there
exists a neighborhood N of x, such that

(1.6) Jlw) = flwo) +V,  flw) = flo) +V

for each e N.
We conclude this Section by recalling that in %(X, €€ox(E)) is
defined the following order relation

(1.7) f < g flz) < gla)or each z e X

@@

for each set-valued functions f,g X: — €Conv(l).
We shall also use the notation f < g+ V (f, 99X, €Conu(ll))
and V e 8B) to indicate fla) = g(a) -+ V for each we X.

2. Approximation of coniinuous set-valued funstioms. In this
Section we fix a compact Hausdorff topological space X and a Fréchet
space I ; we shall consider a subcone % of ¢(X, €% onv(l)) containing the
single-valued functions (i.e. {p} ¢ ¥ for eah ¢ e ¢((X, ))and we shall
study the convergence of equicontinuous nets of monotone linear opera-
tors from € in (X, €Cenv(l)).

First of all, we recall that an operator T' : € — G(X, ¥€onv(H)) from
a subcone € of G(X, ¥Csnv(B)) in €Q(X, 4% onv(l)) is called linear if

I(f + g9) = I(f) + T(g), TOV) = 2E(f)

for each set-valued functions f, ge® and A > 0.
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J ot

Observe that if 7':% - G(X, €Conv(E)) is line
O M A, CConv(l)) is linear then 1(0) = (.
Moreover, an operator 7' : ¢ — C(X, €Conv(H)) is called 1'1"1.(011)01;011@ if
(2.1) f9e%, f <g="1(f) < 1(g)
(ef. (1.7)).
Finally, we say that T is continuous if it is i i

- i _ S . 8 continuous with respec
to the u__nlform symametrie topology induced on % ; thus, for e;wlll( szee (ﬁf
there exists U e B such that, it Iy 9 e € satisfy Wi, o A

Na) < gl@) + U, g(@) < flw) + U
for each welX (le. f < ¢+ U, g <f+ U), then
Tif) (@) = T(g) (%) + V, 1(9) (@) = D(f)z) + V

for each we X (Le. T(f) < Xlg) -V, Tg) < ) + V).

4 I IC is a non empty compact convex subset, of B, we denote by fy

the constant set-valued function on X of constant value K : we .«;haﬁ

say th_at a subcone‘é'of B(X, ¥Conv(H)) contains the constant ;et-va,.iued

tunctlyons it fx e_%” for each non empty compact convex subset X of E
The following Lemma will be useful in the sequel. | il

Lirmaia 21 Let € be a subcone of E(X, CConv(ll)) containing the
c(mstc:,-nt sqt—valued ju'nct'i.o.ns and let (T)fer be an equicontinwous mnet of
monotone linear operators from € in G(X, €€ env(l))). Then, for each V e B
there exists U B such that ’

[r9eb, f <g+ U= Tf)y < i)+ vV for each v e F.

Proof. Let V e B ; since (7,)%; is equi i i
’ el 18 equicontinuous at here exists
Uy €®B such that, for each fe %. E 4 Wz SR SR

f < U = T(f) <V foreachiel.

Now,let U e B besuch that 7 = U, and let f, 0 e ¥ satisfv .

-+ U observe that the set X = T n ](f(;’ff) — g(/_‘-if')]) i8 :?L Tirgnf eil%t;
convex compact subset ol E(cf., e.g. [1, Proposition 3, p. 42 and Theorem
1, p. 41]) and the constant set-valued funetion fx satisfies the condition
Jx < U, ; moreover, if weX and if yefla), we have Y = 2 - u with
veg(w)ndwue U; it followswe U n (f(X) — g(X)) and e g(@) - ful®);
since » € X and y e f(w) are arbitrary we have f < ¢ --- fx ; for each’ vel,
the monotonicity of 7, implies T(f) < Tlg + fx) = T'(g) + T(fx) <
< T(9) - V and the proof ig compleﬁed. i ' A Ly

_In [4], Keimel and Roth have also introduced the class of uniformly
continuous operators ; and operator 7' : ¢ — €(X , €Conv(H)) is called uni-
formly continuons (or briefly w-conti nuous) if, for each V eB, there
exists U e B such that, for each f, ge %, [ '

F<94+U=1T() < T(g) + V.
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It is clear that an uniformly continuous operator is both continuous
abd monotone ; as a consequence of Lemma 2.1, also the converse is true.

CoroLLARY 2.2. Lel € be a subcone of €(X, & C onv)(ID)) containing
the constany set-valued functions and let T (X, CConv(lD)) —» C(X, €Conv
(1)) be a linecar operator of €(X, €€onv(H)) in self.

Then, the following stalements are equivalent :

&) 1 ts uniformly continuous ;

b) I 4s continuous and monotone ;

¢) 1 s continwous at O and monotone.

Proof. The implications a) = b) and b) =c) are trivial and the
implication ¢) = a) follows from Lemma 2.1. . )

Thus, by virtue of the preceding Corollary 2.2, if @ contains the
constant set-valued functions, the study of the convergence of nets of
monotone continuouns linear operators from % in €(X, €% one(B)) is equil-
valent o the study of the convergence of nets of uniformly continuous
operators. . 1

In the sequel, we shall consider subcones 4 of C(X, CEonv(H))
conftaining the single-valued functions and monotone continuous linear
eperators I': € — €(X, €Gonv(H)) satisfying the following conditions :

(2.2) for each ¢ € ¥(X, E), T({9}) is single-valued ;
(2.3) for each fe % and z e X,

T(f) (@) = U T({g}) ().

9 EFol(f)

- By (1.1), the identity operator satisfies conditions (2.2) and (2.3).

In the second part we shall see that, in the case F = R, monotone
continuous linear operators from %(X, R) in itself generate in & natural
Way monotone continuous linear operators from %(X, ¥%oxv(IR)) in
itsell satisfying (2.2) and (2.3). :

Before stating the main result, we state the following fundamental
definition which naturally arises from a similar one which is well-known
lor single-valued functions.

DEFINITION 2.3. Let € be a subcone of €(X, €€ onv(B)) containing the
stngle-valued functions andlel T € — C(X, CConv(H)) be a monotone con-
linuous linear operalor satisfying conditions (2.2) and (2.3).

If H is « subset of %, we shall say that H is a T-Korovkin set in %
if, for each equicontinuous net (T)’er of monotone linear operators from € in
C(X, CConv(dl)) such that the nei (T (h))er converges to T(h) for each
heH, we also have that the net (T (f))%; converges to I(f) for every f e %.

If T s the identity operator, a T-Korovkin set in % will be simply
catied o Korovkin set in 4.

As observed in [4], if H contains the constant set-valued functions,
we can omit the equicontinuity of the net (7)%; of continuous monotone
linear operators in Definition 2.3.

We have the following main theorem.

-1
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VO 1 T 7 ¥ L
i 1 {-ILUL.I.J.[r 2.4, Let X be a compact Hawsdor(f lopological space, I
-}"' ?jac ;—?‘ "F}me’;, f o s-zabfos-je ((,:j CX, CConv(R )) conlaining the single-valued
June ons an Jf. 1 6% (X, CE onv(B)) a monotone continwous linear operator
satisfying conditions (2.2) and (2.3). -

1f H is a subset of € satisfying the Jollowing condition

(2.4)  for each J€%, 2eX and Ve B, there exists h ¢ I syeh that

J <l and T(h) (2) = L(f)2) + V,
then I 4s q I-Korovkin set in @.

t f.,l-"')'oqf. Let (7,)%; be an equicontinuous net of monotone linear opera-

ors trom € in €(X CConv(B)) and suppos that the T <,

verges 1o (L) for e’ach h eH.)) 8 A i e, (TR ))ieg o
ix fe €5 in order to show that th (4 e erges to 7'

we distinguish7(1iffe1'ent Cases. 08 S ez TR 2,
P 15 i .

x _g P)V 1; ;,flfzgle valued. Tet V e®B and consider W e B such that
Let wg e X and congider 1 ¢ | such that f < % and Tk

‘ _ : H gue 4 < _ 1) (xy) < 77

E].nng]ilrl-]:iif](gf. }(12.4(1))7;\7 by the continuity of 7(f) and Th), thlerfa-(gxists gl)

B o B ; Jule ‘h 7 ] i

eger X e})}(;];. 00d N(x,) of z, such that L(h) () = T(f)(2) 4 2W when-

For each veT, T, is monotone and therefore 7'(f) < Ty(h); on the

Other hand, the net (7,())%; converges to T(h ] :
; ; 1 and t} fore there nviclo
u(@y) € I such that, for .33,0161 ce Tl g e (h) leretore there existg

(2.5) Tuh) < T0) + W, Ty < Tyk) -+ 1.

It follows, for each e 7. ¢ > a(#g) and for each ¢ e N ]
Lb) (@) & ThY (@) + W < H(f)a) +°)3W. fsgy i @'

Now, let a, vary in X and congider the open cover (N
ond 2 ; 1 5 Tg) e X T ",
smffé} X is compact, there exists oy, ...y, € X such that gﬁ {zn%s)f(o:gl\) S 5
U . (@n) 5 1ot w el be s;ue.h that a(a;) < « for each ¢ — 1, ...,n. For each
L2€‘3j’ L i % We have T'( j) < T(f) + 3W ; since I(f) is single-valged (ef.
( 1 r], Lhig r1;]1}_)11&3 also T(f) < 1,(f) — 3W ; therefore Ch s 2V
and U(f) < T(f) 4 V and the proof is complete in, this cage,

2°) We consider the sen ral case. Let i /
T general case. Let V e B and congider Wen

Let 2, e V; by (2.4), there exists I e 7 suchthat f < 7

; Lo b < < /&IldTh.‘ &€
< I'(f) (=) 4- W moreover, the set 1'(f) (,) is compact and theref(ofe(t]g()arce

XY g,y T(f) (w5) such that 1(f) () < ) W} + W5 by (2.2)
== 1

and (2.3), we may consider, for each 7 — 1., a i S i

i oF 7 o 7 that T (mﬂ’) et e+ My & continuous selection
We have {¢} ¢ @, {4 < f for each i= 1 #n and further 7

) i< =1,. .. urther 7'(f)(x,) <

o (L({gpi}, ..., T({pn})  (2q) 3 W; by virtue "of the contim{ityO)Of
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T ) T({es)), T(f) and T(h) we may find an open neighborhood
1f)0e e s : - : )
N{zg) of x, such that,for every z e N(x,),

(2.6) T(h) (@) = T(f)x) + 2V, T(f) (z) = co (L({p};- - -, T{od)@)F2W .

At this point, we observe that {¢;} is single-valued for each ¢ = 1,. L
. o rerg o T({ed); ‘eover, since
and therefore the net (I',({p}))er converges to T({¢;}); moreover,

h e H the net (1',(h))er converges to k; hence, there exists «(x,) € I such
that, for each vel, v = a(xy) and j =1,...,u,

(2.7) I({e}) < o) + W, Te}) < T({a}) + W,
Th) < T(h) + W, T(h) < T.(h) - W.

By (2.6) and (2.7) we obtain, for each vel, v > a(a,), ® € N(z,) and
fles ko

T({e}) (@) = T({ed) (2) + W = L(f) (@) 4+ W

and hence, since T,(f) (x) is convex,

(2.9) T(f) (@) = co(T ({1}, - T{oa}) (®) + 2W = L (f) (#) 4 3W <
LAf) () + V5

on the other hand . )

(2.10) T(f) (@) < L,(h) (%) = L(h) () + W < T(f) (@) + 3W < P(f){w) V.

Arguing on the compactness of X as in the first case, by (2.9) im('l
(2.10) we deduce the existence of el such that, for each . ell,fn > o
_T(' T (f') + V, I'(f) < Z(f) + V and this completes the prool. L

In tLlle pm'ticulm: case where the operator 1 is the identity operator,
we obtain, the following Corollary.

) LARY 2.6, ¢ 101 t Hausdorff topological space, I a

COROLLARY 2.6. Let X be a compact ].‘[(bubd()}_l!:f gioc ateltiilia
Frichet sp?we and € a subcone of G(X, €Conv(l)) containing the single
~valued functions. tEg, e 5L a1 L
’ I ffH s « subset of € satisfying the following condition

(2.11) for each f € €, xy€ X and V € B, there ewists h e H such that

[ < b oand hxg) < flag) + V,
then H is ¢ Korovkwn set tn €. B
Reaark 2.7 Under the hypotheses of Theorem 2.4, 11 the subcol}el(@j
also containg the constant set-valued functions, condition (2.4) may be
replaced. by the following :
(2.12)  for each f e %, v, X and V e B, there exists he I such that

f<h-+V and T(h) (%) = T(f) (20) - V.
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The proof is similar to that of Theorem 2.4 by using Lemma 2.1
instead of the monotonicity of T, in order to obtain (2.5) (condition (2.12)
is applied to an element U ¢ B contained in V and such that it ge #(X,
CCenv(H)) and if f< g 4+ U, the I(f)= T(g) -+ V for each t e I).

Moreover, it we consider the identity operator condition (2.11) may
be yeplaced by the following.

(2.13) for each f e %, 2z, X and V ¢ B, there exists b e H such that
S <h+V and h(ax,) < flag) 4 V.

This last condition constitutes a generalization of the result of
Vitale [6]. Indeed, assume X — [0,1], B = [R* (n > 1), and consider the
subspace I' generated by the functions e(z) =a i =0, 1, 2 and ze
€[0,1]) and the set H of all set-valued functions o 1 v(z) B (2e [0,1]),
where B denotes the unit ball in [R* and y € I'. Then, we shall show that
H satisties condition (2.13) with ¢ — €X, €Fonv(R"). Let fe@(X,
EConr(R")) and fix @,e [0,1] and ¢>0; sincef is continnouns at @y, there
exists 8 > 0 such that, for each @€[0,1] N [y — §, 25+ &), fl2) = flzy) +
+ e-[B. Moreover, there exist a compact convex set K in [R" such that

f(») = K for each @ € [0, 1] (ef., e.g. [1, Proposition 3, p. 42 and Theorem

1, p. 41]) and a positive constant M e R such that K Jlwe) - 51 -[B.
Put ¢ —= max {0, 2, — 8} and b — min 1, 2y + 3} and consider a positive
funeticn v e I' such that Y(@) =0 and y> M in [0,11\[@, b]. Finally
define the set valued function A :[0,1] = €€onu(IR") by putting h(z) —
= fl#y) + (v(@) + ¢) ‘B for each ze [0,1]. Then k € H and for each » &
€la, b], f(#) = f(zy) + e-B = (o) +(v(@) + ¢-B = I(x), while, for each
v & [0, 1 I\[ay 0], f(#) & K < f(@y) + -Bf(@y) + (v(z) - &) - B — ha);
henco f < kb and, since h(@y) = f(@g) + <+ B, the proof ig complete. @
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