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Abstraet. In Lhis paper we apply some resulls obtained in the first parl to the approximation
of single-valued continuous funclions defined on a compact ITausdortf Lopological space and
with values in a Fréchel space.

Introduetion. The well-known results on the Korovkin approxima-
iion of continuous real-valued functions have played a crucial role in
the investigation of set-valued contimuous functions (ef. [4], [5] and [8])
and the results obtained are strictly related to the existence of a Korovkin
sel of continuous single-valued functions; in the first part of this paper
[2] we have followed a different approach to the approximation of set-
valued continuous functions, which is independent of Xorovkin sets of
single-valued functions; this allows us to apply the results in the first
part to the case of single-valued functions with values in a Fréchet space.
As a consequence, we obtain a natural generalization of the well-known
case of real valued funections.

We shall assume the same notation of the first part; I denotes a
real Fréchet space, B a base of convex open neighborhoods of 0 in X
and €€ one(B) is the cone of all non empty convex compact subsets of 1.

Moreover, we fix a compact Haunsdorff topological space X and we
shall denote by % (X, E) the space of all continuous functions on X
with values in £ and by € (X, €%c.v(ll)) the cone of all continuous set-
valued functions from X in €€ oxo(l); €(X, K) and €(X, €Conv(ll)) are
both equipped with the topology of the uniform convergence. .

Finally, we recall the notation f <g ++ V (f, g € €(X, 4G onv(H)) and
¥ e ®B) to indicate f(z) = g(a) + V for each v e X.

Approximation of continuous veetor-valued Funetions. In this See-
{ion, we shall apply the main theorem of the first part [2, Theorem 2.4]
to obtain gome Korovkin-type theorems for single-valued continuous
functions.

We shall introduce a class 7 of linear continuous operators on the
space €(X, E) which can be regarded as a generalization of monotone
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operators in an abstract setting and can be naturally extended to opera-
tors hetween get-valued continuous functionson asultablesubeoneof (Y,
€€ onv(B)); this property allows us to study the operatorsin .4 by applying
[2, Theorem 2.4] to the extended operators. '

This program requires some preliminary results; in Lemma 1.1 we
consider the subcone of €(X y €Conv(E)) to which we can extend the
operators in the class 4 ; after we introduce the operators in .# and
study their basic properties, which are based on Proposition 1.2, together
With some connections with monotone operators in the case  — [R
(Proposition 1.3); the mentioned extension property of the operators in
-# 18 given in Proposition 1.5 ; finally, in Theorem 1.7 and the subsequent
Corollaries, we establish the main Korovkin type results.

Firstly, we need to consider the set

(1 .l,) 77(/1‘, (67%01)-/74)(]&‘)) = {f S (6)(‘]_?, (ﬁ%jr;«/w(E)) f there exist
Prre - Pu € CX, B) such that f(x) —
Co(ry- - »u) () for each redXl

(for each »eX, €O (. - -, o,)(w) denotes the convex hull of the setb
1e1(®),. . . pu(®)}); in the following Lemma we list some broperties of
F(X, CEConv(R)).

Lievnia 1.1, The set F(X, GCone(B)) is a subcone of €(X, 6 cnu(k))
contarning the single-valued functions.

Moreover, if [ = co(q,. .., ®y) and g = co (¢y,..., ) are in F(&

CConv(B)) and if % > 0, we have ]

(13) / “*“ g = ¢co (CP]. *}“ ‘-Pu' ey Qp _’_ Lnbly' sey W *[‘ q'J,,,,. ey O -[— d,)m),
(1.3) M o=60 (R, i),

Proof. 1t is obvious that & (X, €Cosv(l))) contains the single-valued
ﬁmc@ons_; then, it suffices to show that (1.2) and (1.3) hold and from
this it will follow that F(X, €Cecrnv(l)) is a subcone of C(X, €Conv(B)).

Let [ = co(oy,. ..,0,) and g = €0 ($,. . y¢y) be in F(X, CEonv(K))

and fix ¥ e X ; for each ¢ — Lioooom and j=1,...,m, p(a) + di() &
€ co(qy,. .., 9, 0(x) + co (1) - bn(@) and consequently

Cco (CPI ‘}‘ '\b])' + oy Qu + l‘l’l" cey @y + Hbm;- . -7(:9:1’%‘ g’)m)(m)c co ((Plﬁ' ¥ '7(Pn) ("’*I) ‘:L

¢O (4)],' . -741171,)(&")'

Conversely, let y —= -, With 4 € co (q,,. . %) (@) and v € co (¢, . ..
- 3¥w) ()5 then, there exist Myyeyh, = 0 and py,. 0, > 0 such that
e _ 7 2 g
iZJ )\1; = 1, ;}tl Mg == 1 aﬂld U —= }m] 7\ECP7'(&1)), .= };,,' ;L_;L"Jj(a)).
; a2l i)

o=} Je=1 i
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Counsequently, we have
£y b g )
};1 E )\‘[P'j‘ = Z )\1' L Ly = _l
=1 je1 t=1  j=1
and

Vi ¢ i &
Y=t 0 = Ml @) A sy vili(2) = 8 Y (e @) - hapdy(a)) =
i1 §=:1

i r=s1 j==1

P
1)) g.: Nl + Y5)(@) 5

=1 =

‘Llllb‘ \’lel(is Y € co (<P1 —[_ q"l" <) Pn + ll"l?' P —{" H’Jm sees Pu +L|bm)(m)’
Since y €co (¢, ..,0,) (@) 4 co ($1y- - y9n) (@) and zeX are
arbitrary, (1.2) is true.
Finally (1.3) is trivial. g
Ifn > 1 and ¢,...,0, € 4(X, E), we shall consider the set

(1.4) A(Prs. - y00) = {0 € G(X, B) | for each @ e X there exists
t=1,...,m such that o(x) = ()}

of all continuous functions on X whose graphs are contained in the union
of the graphs of ¢,...,q,.

Observe that if ¢,,...,9, have not pairwise disjoint graphs, the set
Aoy, .y9,) is not finite in general ; for example, consider X = [0, 17,
fi = R and the functions o, : [0, 1] - R and g,: [0,1] — R defined by
putting, for each xe [0, 1], o,(2) = o sen (m/@) it @ # 0, ¢ 0)=0 and
@s(@) = 0; then, for each w e N, » > 1, the function Yy :[0,1] — R which

: 1 I
takes the value 0 on the interval ————, — | and agrees with o, else-
n-+1 n
where, belongs to A(¢,, o). _
Moreover, if o,...,¢, have pairwise digjoint graphs but X has an
infinite number of connected components, we have again that the set
i1 ! . 1
Aoy, . .,9,) may be not tinite [ for example, congider X = 0lu Y {w 3
nx1 g
however, we have the following Proposition.
PRovosrrion 1.2. Let @y,...,0, (0 > 1) be in C(X, ) with pairwise
disjotnt graphs.
i . . - FAl
Then, the elements of A(ey,...,0,) are all the Junctions n (X, 1)
which cotncide with some ¢ i — 1,...,m) on every connected components
of X. , !
onsequently, if X is @ connected topological space, we have

(1.5) A(‘Pl" 20 = {(Plr' i '!(P”}!
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and, if X has m (m > 1) connected components, then

card (A(cp“. sy D)) ==,

Proof. Let € be a connectod component of X and let pe A(q,. . -2 @n)
and z, e €5 consider 7 — Lo oon such that e(a) — P wo) (el (1.4)) and
the set 4 = {pe | ola) = of@)}. The set A is non empty and closed
in the relative topology of (' moreover, if o e A, there exisfy V e 9 such
that, for each j =1,.. . n, J# 1, oix) — o) ¢ Vi now,let We po
such that W < 7 and 17 e @ satisfymg U 4 U = W. Since the funetiong
@y — @ are continuous (j = 1,. . My d # 1), there exists a neighhourhood
N of w such that o(y) — ody) e U and oY) — oly) ¢ W for cach yeN
and j=1,...,m, ji. I, for some ye N and J=1Ty..m j 14 we
have oiy) — o(y) e U, it resulis oY) — wily) = (sl8) — 9(y)) - (o(y)—
— o) el + U < W and this is a contradiction. Then, by (1.4'), it
must be N n €' < A and so A is open in the relative T_;npu}r;gv of (',
Sinee ' iy connected, we obtain 4 - C, that is @ =— @;. )

Hence, (1.5) is true, and from g straighforward inducetion argument,
we also oblain (1 i) '

* In fhe sequel, we shall be coneerned with continuouns linear operators
L 6(X, 1) - C(X, H) satistying the following property :
1(”[’1;) if Py an €GO, _1'5'), there exist et 4, ke Aoy, s ®n) Such
HEATE

PEUE, By o e ool opu = Lo) € Go(Lldh),. .., 1: (4u))

)_l)()bviously, the identity operator sabisties condition (1.7) (cf.2,
(1.1)7). | ‘

I we denote by A, (m > 1) the set

m
(1.8) A, = {()\J_,. “shu) € R™ | 7, = 0 for each § — Iyooo,m and 3 ke },
i1
<';0ndi17i01’1; (1.7) may bhe restated as follows
(19) . tf Py, 'ﬁouf ((f‘(ﬂf, L), there ewist By - 'aq’m € A*(CPD'_' 1Pn) such
that, for each ¢ e (X v ), e co (g, . SPa)and oy e X, there eatsts (e

ceha) € Ay such that 1) (@) = I Y )\;s,b;) (#), or equivalently
P==1

(1.10)  if o,... 0, c CX, B), there ewist Gryse ey € Ap,. . Pu) such
that, for each w,e X, '

U (i) ()} == L 'rlf( )3 7‘\:*’#:‘) ) } .
;1E,yd(cul,;l,._..pn)) (ZJ,,..,'/.m)eAm l =1

(’J()D(ﬁﬁOﬂ (1.10) says that, for each JeF (X, Qf‘émw(]y’)), there exist;

VAP UM 111_(6(X, £) such that J='co ({y,...,d,) and, for each u, e X,

U S = U {L(x b Gzl
vEg () (Z,,_.,hm}EAm i=1

*

i.e. ofy)e calp (.. SPa(t)) Tor cach xe X,

3
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However, the functions ¢, . . 3w € (X, B)such that f=co(dy,. . . ,P,)
cannot be arbitrarily chosen. For example, consider the identity operator
on %([—1,1], R) and the set-valued funetion [ [—1,1]15%% 0 4 (IR) defin-
ed by putting, foreach e [—1,1],f(@) = [— @,%]; then, the equality in

(1.10) holds with ¢, (2) = — l2| and y(z) = |@| (ze [—1,17), but nof
with ¢, (@) = — & and $o(@) = @@ e [—1,1]).
Ii X is connectedand £ :% X, ) - B(X, B) satisties condition (1.7),

by virtue of Proposition 1.2 and (1.7), we also have the following property
(LI1)  if oy .00 e €LY, B) have potrwise disjoint graphs, then

e C(X, B), peco (q,.. Pn) = L(o) e co (Io),.. dw,)).

and, by (1.10)
(1.12) if o, .. 0, e (X, B) have pairwise disjoint graphs, then, for each
@ye X,

Ol Mgyt 2 {7(3 o) wro)}

AL CHEAR (Brireesdeg) €2,

Condition (1.7) generalizes in abstract spaces the rdle of monotone
operators in spaces of real valned continuons tunctions ; in fact, we have
the following Proposition.

Proposition 1.8, If X 4s a connected compact Hausdorff lopological
space and L %X, R) — ¢ (X, R)4s a Uinear operator Jrom GLX, [R)
wn dtself, the following stalements are equivalent

a) L satisfies condition (1.7);

b) there exist two closed subsels X+ and X~ of X such that

B R Vi) gl )
(1.13) ¢€bX, R), 2 20=1I(p) >0 on X+ and L(o) <0 on ¥,

Moreover, if 1. satisfies a) or equivalently b), we can lake

(1.14) v = L) [0, o0)), X= = L (1)((— oo, 0]),

’

where 1 denotes the constant Junction of constant valye 1.

Proof. a) = b) Let X and X - be delined as in (L.14). Then X+ and
X~ are closed subsets of X and X — x+ U A~ Now, fix ¢e%@(X, R),
¢ = 0; since L is linear, we can assume ¢ < 1 and therefore o e co(0,1);
by (1.11), we obtain L(¢) e co (0, L(1)), and consequently, for each
xelX, L(p) (#) must be positive if (1) (@) is positive (l.e. e X ') and
negative if L(1) (@) is negative (i.e. reX-).
b) = a) Let gq,.. 9 € 6(X, R), and consider Yy = inf (¢,...,p,) and
s = SUD (@y,...,s). Then ¢, and §, are in APy - y9) (ef. 14));0f 9 e
e C(X, H), €00 (9y,-..y0,), We have Yo— @ = 0and ¢ — ¢ > 0; by
(1.14), and the linearity of L, we obtain L) () < L) (x) < L) ()
if #eX* and () (®) < L(g) (#) < L(¢y) (x) if eX-; in any case
L(e) & co (L(Yy), L)) and (1.7) is satistiod. ]
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Observe that condition (1.13) is equivalent to the following
(1.15) ¢, e (X, R), 9 < ¢ = L(p) < L(Y) on X+, Ii(¢) < L(Y) on X-.

RuEMARIC 1.4, 1. The implication b) = a) in Proposition 1.3 remains
true also it X" is not connected, but the implication a) = b) does not hold
in general,

For example, consider X' — {0, 1} and the operator L :4(X, R) —
—%(X, R) defined by putting, for each ¢ € (X, R) and « eX,

(1.16) Li(e) (2) = ¢(0) — o(1).

Then, 1. does not satisfy condition D) in Proposition 1.3
since it takes opposite sign at the two positive functions 7y and y, in
(X, R)defined by setting %;(0) = 0, y,(1) = 1 and x2(0) = 1, y,(1) = 0.

Now, we show that L satisfies condition a) in Proposition 1.3; let
@1y- - 9u € (X, R) and consider the two functions ¢, and ¢, in (X, R)
defined Dby setting ¢,(0) = inf (9,(0),...,94(0)), ;1) = sup (gy(1),. ..,
o(1) and  4g(0) =sup (31(0), - - -y0a(0)), Pu(l) = int (g,(1), . ., @u(1)).

If 9 e 4(X, R), o €0 (¢y,-..,9,), there exist Ty Joy Ty 1 = 1y..ym
such that ¢;(0) < ¢(0) <9;(0), @,(1) < o) < @;,(1) and hence $,(0) <
<9(0) < 4s(0), da(1) < o(1) < §y(1); by (1.16), We have L({y) <L) <
<L(dp), that is Lie) € co(Li(dy), L(s)).

2. By virtue of the preceding Proposition 1.3 and Remark 1.4.1,
cach monotone linear operator I : (X, R) — (X, R) satisfies condition
(1.7).

In the cage &/ = R observe that there exist continuous linear opera-
tors L:%(X, R) - 4(X, R) which satigfy condition (1.7) and are not
monotone ; an example is furnished by the operator I :%([a, b}, R) —
— ([, v}, R) (¢, b € R, ¢ < b) defined by putting, for each ¢ e ¢([a,b], R)
and x e [a, b,

A

x

L) (2) =\ 9(2) di,

Yo

where @, iz a fixed element in the open interval (@, b) (the proof that 1
satisfies (1.7) is based on the monotonicity of the integral and the fact
that, for each ¢ e %(fa, b], R)), the value that L(o) takes at « e [a@, b]
depends only on the values that ¢ takes in the interval with endpoints
x and ).

However, condition (1.7) is not satisfied by every continuous linecar
opetator L :4(X, H) - €(X, B); for example, consider again the real
case fl = R and the operator L :€([0, 17,R) — €([0, 1], R) dei"i?ed by

putting for each ¢ € €([0, 1], R) and z € [0, 1], L(o)x) = o(x,) — S o(1)dl,

0
where w, i3 fixed in [0,1]. Denote by o, and ¢, the constaut functions of
constant value 0 and respectively 1; then, for each 2 e [0, 1] and xze[0,1],
L(hpy 4 (1 — N)op)) (2) = 0 and (1.7) is vot satistied. &
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In the next Proposition we shall show how it is possible to associate
a_continuous monotone linear operator Ty, : 7 (X, CConv(l))>C(X, CConv
(#)), from the subcone F(X, CEonv(H)) of (X, FConv(H)) in EGX,
€Goov(l)), to every continuous linear operator [ : ¢X, H) - CX, B)
satistying (1.7).

Propostrion 1.5. Let L :9(X, E) - (X , BY be a continuous linear
operator satisfytng (1.7).
Then, for each f € F(X, €Conv(B)) and e X, the sel

(L.17) Lyw= U {L(g) (2)}

©Ewellf)
s @ _non emply convexw compaci subset of B and the set-valued SJunction
Jo: X — CConv(B) defined by putting, for each w e,

(1.]8) fll(-q//‘) T51 -[/,/,;1:

18 conlinuous. /
Moreover; the map 1) : F(X, €Comnc(B)) - C(X, €Conv(H)) defined
by putting, for each fc F(X, CCenv(R)), '

(1.19) | Ti(f) = fu,

5 @ continuous monotone Linear operator from the subcone F (X, BCowv(l))
of C\X, €CConv(l))) in CX, €Ccnv(H)) satisfying conditions (2.2) and
(2.3) of [2]. -

Proof. Let fe F (X, 6% 0ne(l)) and consider Py oy € €(X, E) as
in (1.10). For each 2 e X, the set £, , is clearly non empty and convex ;
moreover, by (1.10), the set L, . is the image of the continuous map  (Aqy. ..

e ;
oo ghay) > L( ¥ }.,upi) (%) defined on the compact set A,, (ef. (1.18)) and
L =1
therefore 1, . is also compact. »

Now, consider the set-valued function Jr defined as in (1.18). Let
e X and V e®B; by the continnity of L(dy)y. o L(y) there exists a

neighborhood N of @, such that, for each ¢ N and 4 — 1,...,m,

LA$)(@) € L)) -+ V, Tl)(ao) € L)) - V'

then, for cach @ e ¥ (¢f. (1.10), (1.17) and (1.18)),

fio) = tya= U e @)=, U Loy rab) (o}

wETel|]) (1 yeaodo ) €A 1

T T ) = U ) 1)
Frrrenhp) €4, 1 (sl €A

Fe mn =l

c (( U {‘» AL ds)(2h) }) LV

Sl EA a1

i L {L( )2 7‘1“1‘J1') ("7"0)} + V= Ly, + V = fulwg) + V,
i1
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and similarly,

Jl@o) < ful@) + V5
since @, is arbitrary in X, the set-valued function f, is continuous (ct.
[2, (1.6)1).

( Now, consider the map 7', defined as in (1.19). The linearity of 7,
follows from [2, Proposition 1.1] and Lemmsg 1.1; moreover, by (1.17),
(1.18) and (1.19), it is clear that ', is monotone and satisfies (2.2)
and (2.3) of [2].

Thus, we have only to show that 7, is continuous. Let V e B
since I is continuous there exists U, € B such that
(1.20) €%, B), ox)e U, for each zeX = L{o) ()eV for
each 2eX.

Now, let U € B be such that U < U, and consider f,g e G (X, 66 cnv(E))
satisfying f < g+ U, g <f+4 U. Let x e X and y e T (f)(z); by (1.17),
(1.18) and (1.19) there exists a selection ¢ of f such that y = L(e) (x);
since f < ¢ -- U, there exists a selection ¢ of g such that o(t) — §() e U,
for each ? € X (indeed, it suffices to take a selection of the set-valued map
L= g(t) 0 (o) — U) which is lower semicontinuous by virtue of [6,
Proposition 2.5 and Proposition 2.3]); by (1.20), we have L{g) (t) —
— L) (t) e V for each t eV and in particular, Z(o) () — L) (x) eV
this ylelds y — I(e) (#) € L({) (%) + Ve Ty(g) () +V ; since y e Tr(f)()
and @ eX, are arbitrary, we obtain T4 (f) < Tu(g) + V; in a similar
way, we have T.(9) < 2'.(f) 4 V and this completes the proof. H

At this point, we make the following Definition.

DrrinrrioN 1.6, Let Ly (X, B) - €(X, E) be a continuous linear
operator satisfying (1.7). We shall say that a subset T' of 4(X, E) is an
odl-Korovkin set in €(X, ) if, for each equicontinuous net (L)%, of linear
perators from X B) iniisolf satisfying coadition (1.7) and such that the
net (L, (v))5, converges to L) for ewch v eI’ we also have thaithe net (L(9))z,
converges to L) for every ¢ € 6€(X, K). -

If L is the identity operator, an L-Korovkin set in G(X, E) will be
imply called a« Koroviin set in ¥(X, B).

We are now in a position to state the following result.

Trnrorey 1.7. Let "X be a connected compact Hausdorff topological
space and L :G(X, B) - G(X, K) be o continuwous linear operator satisfying
condition (1.7).

If a subset 1" of (X, E) satisfies the following condition
(1.21) for each oe¥(X, I), xyeX and V eB, there exist 00 0

oo tn el with patrwise disjoint graphs and such that

P €CO (Y- -y Ya)s
L1 ) (@) -+ 5 Llva) (o) € Li(9)(wo) + V,
then I is an L-Korovkhin set in €(X, K).

Proof. Let (1,)%, be an equicontinuous net of linear operators from

G(X, ) in itself satisfying condition (1.7) and such that the net CACT)I

Approximalion of continuous set-valued functions I - 33

converges to L(y) for each v e I', Consider the operator T' = T, associated
to L as in (1.19) .and, for each i eI, the operator 7, — Z,, agsoeia.ted to
L&. Thus, we obtain the net (T))%, of continuous monotone linear operators
from the subcone F(X, €€ cov(l)) of C(X, €Conv(H)) in B(X, CCovnu(B))
?n_d an operator I' from #(X, ¥Conv(B)) in G(X, CConv(E)) satis-
ymg conditions (2.2) and (2.3) of [2] (cf. Proposition 1.5).
rN ow, define the set
H = {he#X, @€ onv(H)) | there exist Yur- - -yYs € I' with pairwise disjoint
graphs and such that A = co (v,,. . o) b
}?Ve r;ho; that the net (Ty(h))%; converges to T(h) for each h e H.
ot heH and let vy...v,e ' wit irwi ¥
PO il T B2 EIOR ¢ with pairwise disjoint graphs such

LetV e B ;since the net (Li(v5)%; converges to L(y;) for eachj = 1,..

.’;n, there exists o el such that, for each j = 1,...,n, e X'and . el,
oy

Lvs) (@) € Liy)) (@) + 7, Liv)) (@) e L(y,) (a) + V.
By (1.12) and (1.19) we have, for each x ¢ X and 1 e I,v > o

(1) (m):p"_”%wn{z 2 Lfx,) ‘“”}Cu U 3 ) @)+ )

i=1 ""’7?1LJEA1I jml

< (m,w%))e% {JL; ML(w)(m)}) +V =1T0h) (x)+ V

and similarly
I(h) (2) = T(h) () + V ;
hence the net (T.(R))%, converges to T(h).
Taking into account that elements of 8 are |
_ ng . conye: )8
that condition (1.21) may be restated ss follows UET [Heaoherve
for each ¢ ¢ €(X, L), 2,e X'and V ¢ B, there exists & € X such that
o} < by L) (@) < T({e}) (w0) + Vs

hence, we may argue as in the first part of 1 ' )
: ® In part of the proof of [2, Theorem 2.4
to show that the net ( T({9}))z2, converges to T({¢}) for ea,éh pe¥X, E}

and this implies that the net, (L(e))s : y !
] 1 () ) converges to I, for
o c €T, ). ¢ i (% (@) for each

REMARK 1.8. We point out that in (1.21) the requir i
| _ i We | ih; 2 quirement on 0.5 e
t({‘ l}aye 11);9,11(“13(3 digjoint graphs is essential, For example, conswi(a’er t,};e
operator L : €([a, b], [R) - %( [#,0,],R) (¢,0eR,a < b) defined by putting,
b
for each ¢ e %( [, D], R) and we [a, b], L(e) (#) = S @ (t) dt and let

&
b

i {cpema, b, tR)lSqo(t)dt £ o}.

a

S—c. 8091
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Then, for each ¢ e %([a, b], R), &€ [a, b] and & > 0, there exigt
Y1y v2€ I such that ¢(z)eco (v1(@), vo(2)) and Y1(®o) = (@) = 2(%o).
Moreover, I satisfies condition (1.7) (cf. Remark 1.4.1), but I' is not a
0-Korovkin set in €([a, b], R) (indeed, I, # 0). »

REMARK 1.9. If X is » compact Hausderff topological gpace With m
(m> 1) connected components, and if we replace condition (1.21) with
the following _ el
(1.22)  for each ¢ € (X, E),2,eX and V e B, there exist Y15+ - yYn € G,
B) with pairwise disjoint graphs. and such that i

Ay oyn) = T
P €CO (Y15- - -yYn),
AAY) (o) € L (9) (20) . V. for each v e A(vs,. . . 1),
then I' iy an L-Korovkin set in G, B).

The proof is similar to that of Theorem 1.7, taking into account
that the set A(yy,..,v,) is finite for each Y17+ -2Yn € €(X, E) with pairwice
disjoint graphs (cf. Propos ition 1.2) and therefore the net (Ly(h)), con-
verges to I'(h) for each h e H, where H is defined as Tollows ;

H = {heFX, CConv(R))| there exist vy,..., 7. € ¢(X, F) with pairwige
disjoint graphs such that A1y - oyyn) © T and b = cofyy,. . ) ‘

In the following Corollary we congider the special case where 7 is
the identity operator. '

CORGLLARY 1.10. If X 4s a connecled compact Hausdorff topological

space and q subset T of ‘I‘?(X, E) 3:‘1#%.6:]"?:63 the foIZow*iﬂ.g eondition

(1.23) for each ¢ € €(X, B), z,¢ X and V e B, there exast vy, ,. . .y, € ' with
parwise disjoint graphs and such that - : SIS

o(2) € O (y1,. . yva) (@) for each xeXi,
Y1(@0)y- -y ya(@4) € (@) - ¥,

then T' is a Korovkin set in €(X, 1).

At this point,'we can obtain ‘the well-known results ‘in the e&%o
BE.—= [R. We observe that if fe®(X, €€ onv(R)) we can define the functions

a:X >R and g;: X — R by setting, for each # e X,
(@) = Inf f(@),  B@) = sup f(x);

due to the continuity of f, a, and 8, are both continuous and Ji=:c0 (a, B,);
therefore the subcone % (X, ¢@onv(IR)) coincides with FX, GG onv(IR)) (ct.
(1.1)) and consequently, if we consider a monotone continuous linear
operator I :6(X, R) - (X, [R), the associated operator 7', (cf. Remark
1.4.1 and Proposition 1.6) is defined on the whole cone CX, CConv(R)).
It X is connected, the proof of Theorem 1.7 also shows that the associated
neb (1'r ()5, converges to T.(f) for each continuous set-valued function
f e C(X, €6onv(R)) (indeed, every continuous function Je4(X, 4onu(R))
can be uniformly approximated by the continuous set-valued functions
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ec;)c(lc;[ x—e%)ﬁ.ﬂ[ + &) (e > 0), which Satisly (o, — ¢) () # (Br + €)(x) for

_Moreover, we observe that if [, (X, R)» ¢(X,R) is a monotone
confinuous linear operator and it 1. : (X, CConu(R))-4(X, CConv(IR))
13 the associated operator, by (1.17), (1.18) and (1.19) and Proposition 1.5
we obtain, for each fe?X, CConv(R)) and 2 e X, f

(1.24) Tolf) (@) = [Lloy)w), T(p,)()].

I Py .

. Taking into account the ahove remark, we can briefly return to
consider set-valued contimuous funections in order to give some examples
ol approximation processes 1n the cone (X, ¢ eno([R)).

J*]:fAMPLF.:S 1.11. In the following examples we consider the set-valued
Bernstein operators on the standard simplex and on the hypercube of [R»
(» 2 1); on the standard simplex, the convergence .of the Sequence of
Lhese operators to the identity operator has been also obtained by
Prolla [7] with different methods and quantitative estimates. i

L. Consider p > 1 and ley, X = X% be the standard simplex in R .

AP = {(ml,. < @) e R?[ @, > 0 for each ¢ — 1,...,pand )jj @; < 1} .
; i=1
For each #e IN, we recall ﬂlat the w-th Bernstein ¢ erator
(Bu 96X, {)R)E %(X, R) is defined by setting, for each 9 e BX, D%)) and
xi?“".xn € ’ \

bl i : X o s
(1.25) B.(9) (@ . ., %) =
n! n p
g ; B T e Ol o g Ly ) LI g ik fii il
: [T /lpGEN Il/l !" At h,’D !(n O ll'l_ e ‘h’?’) ! j . z 4
Mgy, <n A
| ﬁ 0 nﬁlllﬁ...—hﬁ ]’;1 kp i
., Pl 2,
P n %

i .. For each % € [N, B, is a positive continuous linear operator satisfying
,condition (1.7) and consequently we may consider the associated opera-
tor B,,:‘é*(l,ﬁf??ﬂ:u-u(m})_éa’s’(;i' y €€ 0xv(IR)) which is amonotone continuous
linear operator of @(X ) Conv(IR)) in itself. Since the sequence (B,(¢)),en
converges to o for each o e ¥(X, R), condition (1.21) in Theorem 1.7 is
obviously satisfied with I' = %’(X), [R) and consequently we can apply the
same argument in the proof of Theorem 1.7 with /7 — C(X, €Bonv(R)) to
show that the Sequence (B,(f),en converges to [ for each fe €(X, CConv(R)).

In order to give an explicit expression of the set-valued Bernstein
operators, we observe that, for each n e N, B, is a positive operator and

therefore we have, for each fe (X, €Comv(R)) and (%15 - oy@,) € X (ef.

(1.24)),

(1.26) Bn(f) (#1,. .5 @) = [Bu(es) (y,. . %)y B By) (L1, 2,)]; ;
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we finally obtain, for each fe ¢(X, G one(R)) and (xy,. . LryedX,

(127) Bn(f) ((wlf sEeD! wj?) =
n! R 1" (1 i
1 23
hisipe Bale by l(n — Ry — o —hy)!
1,14-...4—1;:1,4"
b n—hl—‘...~hp . h‘l hp)
—i‘z"f wt) f(n’”', (2

idi F ( ily f v noting with A ,(ay,...,2,) the

lidity of (1.27) easily follows by denoting wi 5 :
(sfalégn‘ci&n;eilfl)el‘ o(f (1.27) and, with the help of (1.25)and (1.26), Ey shox;r
ing that the equivalence -y e A, (f) (@4, ..., #,) < y € Bu(f)(@1y- .., Ty
holds for an arbitrary yeR).

i ] e =] » the hypercube of R?. In

2. Consider p > 1 and let .Y [0,117 Dbe 1 _ s

this case, we rec:g,ll that, for each n e N, the n-th Belnst(?nYoI&?e)r%t]%
B,: (K(X,’ R) — 4(X, R) is defined by setting, for each ¢ € ¥(Y, an

Byye s X)X
( 1 ’ 11) ’ Bn( cp) (‘4171" sl wp) — :
h [
: i L 93’“(1 — &ML 2ie (1 — Tp)tv @ (-?1-- 350 .,—2)'
e wii ol } i ph 7 n
1 »

Bysenslig, =0

i irst i is e ve havethat the correspond-
the first example, alsoin this case we AP

ing asﬁ)scil?:ted sequence (B,( f,)),,em converges to f foreach fe¢(X, g’%?g{;;'}(uﬁ()ah
i Also in this case, the explicit expression of B,(» € [N) can be obt:

ing same line of Bxample 1.11.1. ‘ . el g
fonowﬁgtht;lga;e F =R, the classical definition of L-Korovkin set 1miplw 95
equicontinuous nets of monotone linear (_)pera,tmés Prfmth(;asritit(;)llllanl Smaﬁ?(‘ll

) 8 satisfying condition (1.7); by virtue of Prop S
%pefla;rokl Sl.fl, and z'J-JJ-Korovkin set in the sense of Definition 1.6 is always
n L- ’kin in the classical sense. e
e g; l%g);gggsiltion 1.3, Theorem 1.7 and Corollary 1.10, we Obtm]]} Llu;
following> result which is well kno\_yn ,111 the case of monotone linea
continuous operators ( cf. [3] and [1, Theorem 3]).

j 101 ; t Hausdorff topological
OROLLARY 1.12. Let X be a cormec_ted compac o
space (fmmd L %X, R)— ¢4X,R) be a continuous Ime'éam operator of €(X7, IR)
tn tself satisfying the condition b) of Proposition 1.3. o
If a subset T of €(X, IR) satisfies the following condiiion
(1.28) for each ¢ € ¥(X, R), @y X and € > 0, there emist v,,
Yo € I such that v, < o < vy and | Llyy) (%) — Llys) (%) | < &
then 1" is an L-Iorovkin set in €(X, R). o o
) 3 X sfies the following condition
Moreover, if a subset 1" of ¥(X,IR) satisfies t : Agiis
(1 29)}[:;6223; cpfe €(X, R), xgeX and < > 0-there exist vy, vp €l such
that vy < ¢ < g and vo(@o) — 11(®o) < e

then 1" is a Horovkin set in €(X, R).

’
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Proof. We have only to show that the tunctions v, and Yo in (1.28)
may be talken with disjoint graphs. Let ¢ e 9(X, R), mye X and ¢ > 0
and consider § ~ 0 guech that 8§ < ¢/3 and 8 [ L(1) (@) | < ¢/3 for each
@ eX; define the functions P1=9@ — 3/2 and g, = ¢ - 3/2; by (1.14),
for each i = 1, 2, there exist Y10 Yoo € I' such that TS < ¥ and
| Lilyy.6) (@9) — Llys ) (@) | < d; then, the functiong Y1= Y12 and y, —
= Y2,, have disjoint graphs and satisfy the conditions v, < o < Y2 and

| Lra) (o) — Liys) (@) | <
< Mlyan) (20) — L(y)(wo) | 4 Hiv2,2) () — LA @g)(25) | -
T 1) (w0) — Lieg) (w0)) | < -
STLCra) (w9) — Liya) (a)| + FLe.0) (00) — Ly ) ()] -

+ L (1) (,) — LA 9s) (%) | <
<8 43 } ¢/3<e.
Finally (1.29) follows from (1.28) with I equal to the identity .
operatorm.
We ¢an give another application of Theorem 1.7 and Corollary. 1.10,

by considering the barticular case B — R*; for simplicity, we restrict
our attention to the identity operator.

COROLLARY 1.13. Let X be « connected compact H ausdorff topological
space and I be a subset of € (X, R) satisfying condition (1.29)

Then, the set
(1.30) I'n = {oe ®X, R*) | there exists J=1,...m such that

and Pri s ¢ = 0 for each § - 1,...,m,1 # j}
(where pr; denotes the i-projection of R" ip R) s @ Korovkin set in
74X, R").

Proof. Rirstly, weobserve that the functions vy, and v, in (1.29) may
be taken with digjoint graphs (cf. the proot of Corollary 1.12).

At this point, we denote by As the subspace generated by the
subset I, of €(.X, [R*) defined in (1.30) and we show that A, siitisfies con-
dition (1.23); let ¢ €4(X,R"), ye X ond ¢> 0; for esch § — Ly s 0By
by (1.29) there exist, vi and y{’ in €(X, R) with disjoint graphs and such

1
that v/ < o, < vy}’ (¢: = pPrio o) and Yi'(%g) — vi(a,) < o " For each

priepel’

subset J of {1, ..y B}, consider the function Y, X — R* with com-
ponents v (¢ =1, ..., n) defined by

Y,/,'L' = \i'i’ lf /I.r ¢ r] {U!d YJ.'@ == "i’i’, iJ. ‘i € r[.

Then, for each J < {1y, ml, v, is the som of n elements of T, and
thercfore belongs to Ay s sinee v and vi' have disjoint, graphs for each
t=1, ..., %, the functions Yo (= {1, .., n}) have pairwise disjoint

graphs ; moreover ¢ € co((vs)seq,....y ) and denoied by d the diameter of
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, , 1 Ao iy
co((Y ) ren,..n M), we have d < (9 e/ 1 < ¢, and hence vy, ()

(J = {1, ..., n}) belongs to the closed ball in R” of center o(x,) and ra-
divg e. Then A, & ,ah\h(\x condition (1.23). B
Finally, we obscerve that many examples of subsets 1" of ¥(X, R)
satizfying condition (1.29) are well known, and from them we can obtain
mauy corresponding exampler of subsets T, of €(X, R?) defined as in
(1.30) which are Korovkin gets in 4(.Y, R"). l\Ime()ver, i we consider o
subset I of #(\, R) satisfying (1.29) and consisting of 9 elements, the
corresponding Kol()\ km sel 1", in €(X, R") consistsexaclly of pnelements ;
in pavticular, it X ix the compact real interval [0, 1], we can consider the
minimum nomber p = 3 and obtain & Korovkin set in €(X, R*) cousist-
ing of 3n elements.
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