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INTEGRAL AND DISCRETE INEQUALITIES

GH. TOADER
(Cluj-Nap oca)

1. Tatroduetion. In [8] we have proved some integral inequalities
showing that the inequalities are valid for a sequence of integral sums
with norm tending to zero. In thig paper, starting from some integral
inequalities, we prove discrete versions.

To avoid complications related to the integrability, we suppose all
the functions which appear in what follows to be continuous. The follo-
wing results were conidered in [8]:

Theerem A. If the function f: [ a, b] - R s Jensen convews, h:
la, b] = R is positive and symmetric with respect to (@ + 0)/2, then :

b 1
f( g ;F ”) < g F(m) h(w) dw/gh(m) do < --7-'(3)4’2!@)-.

a

Theorvem B. If the Junction f: [a, b] — Le, d1is increasing and . ensen
convex and g, b : [¢, d] S [0, o) are such that glh s mereasing, then :

b b . 1) f@
(1) gg(f(m)) dx/g (@) do < S (@) dw/ g fi(a) da.
a a Ja) Sia)

Remark 1. The first theorem was proved by L. Fejér in [2] and for
(@) =1 it gives the inequality of Hermite — Hadamard. The inequality
(1) was proposed as a problem by A. Lupag in [5] for glw)=a2 and h(r)=g.
It was proved by L. Daia in [1] for g() = 2" and h(a) = o* with
7> s. In the form (1) it was given by 1. Gtavres in [3] bul under the
assumption of differenti&bility of f. We have shown in [8] that the i nequa-
lity is valid without this last condition.

The following result was given by J. Kolumban and C. Mocann in
[4].

Theorem. C. If the Junctions f, g, h: [a, 8] - IR are posiiive, g is
mereasing and differentiable, g(a) > 0 and : )

Sf”(t) ity di < g 9%(t) k(1) A, Yz e [a, b]
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then for 0 < p << ¢:

x

S.j”(t) () dt <

a

gty h(t) dt, Yo € [a, b].

Ry

2. Finite differeneces. For a sequence (2,)f.,, we consider the finite

differences of order one:
A;, &y == (]};;,H, == .’X/';_», 1 < k << I *f- P <N

and of order two:

A2 @ = Tragrg — (14 ¢/p) wrap + (¢/p) @, 1 <E<htp < kD -+ g<n

We denote simply Al = A! and A}, == A%

A sequence (x)%., is increasing if A' @, > 0 for 1 <k <n -1,

bul this is equivalent with the condition :

ALz, >0, for 1 <k <k+4p <mn

as
s
(2) A} oy =% A Ty

$=1

. , ST I .
Analogously, the sequence (xx)i-; is said to be convex if A* @y > 0 fo

1 <k <n-— ¢ and this is equivalent with :
Ayzp >0, forl <kb<k-tp<k+p+qg<mn.
because we have:
Lenuna 1. Hor every I, p and ¢ :
=1

(3) Ay T = i_, © A% Dprprg-i-1 1 (@P) Y J A% Ty

1==1 i=1

hold. ‘
Proof. We have:

ALy mp = A} B — (q/P) D) 21

and using (Z2):

4 P
(4) Dy Br == g‘; A Ty prgeg (Q’P)jg-l AV Ak
Applying Abel’s identities :
q 951 .
Su=3 Ay + a0
g1 4= ]

respectively

’
D AP — Y Ay,
J=1 =1

for the two sums of (8), we get

g—1

s =Lk
Dope By = YA Prpil gy q-Ala

=1

-1

1 Ll ;
— (q/p) (p Al o = Y § A%y,
i=1

thus '(3).

integral and discrete inequalities

! i) =g 1

)

Lemark 2. Relation (3) is similar with that given by T. Popoviciu

in [7] for divided differences.

' 3. Diserete inequalities. We begin with a discrete version of Fejér’s
Inequality. We say that the sequence (p:)i=y 18 symmetric if :

_ 'E,‘heorem E. If the sequence (x)!., is conver and
and positive, then

H

(P)i=1 18 symmetric

il (Boenm + Goram)l2 < 3 @ pl Y, p, < (2, + 22
i==1

t=1

where [a] denotes the integer part of a.
.
Proof. As Al ., > 0, we have:

(n — 1)@ <t — 1)@+ (n — 1) @y

Putting # — i -+ 1 instead i we get :
(7 = 1) Tu_ysy < (0 — ) Wn A (1 — 1
and by addition :
Uy + Taoey € By + B

Multiplying by p, == pa_;y, and adding for { =1,
second part of (5). For the first, part we congsider se

7 odd or »n even. So, if # = 2m 4 1, as A i

2'a;m+1 < oy -+ Tom+ g-¢+

) @y

-+ # we get the
parately the case of
r1 &; 2 0, we have:
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Multiplying by p; = Pym+g—; and adding for ¢ =1,..., 2m 4 1 we get :

2m-1 2m-+1
Y @pd Y P 2 Tuy = (Bemrgiz + D)2,
=1 =1

Yor n = 2m, we have:

. 2 o r 2
(’m o 1/) Am_.li, m—it1 B —I— (777/ Fra i + J.) Am-—ii—l, m—i Ly = 0
hence :

Tm + Ty < B Tomeyrq-

Multiplying by p; = Pam-+; and adding for ¢ =1,..., 2m, we obtain :

2m

2m
S Y, D 2 (@ A Bnr)/2 = (Breminym + Ceminiz)/2
i=1 =1

Remark 3. For p, =1 (i =1, ..., n) we get a discrete variant of
Hermite-Hadamard inequality. On the other hand, inequality (5) can
be used for the proof of Iejér’s integral inequality.

Passing to theorem B, we can see that inequality (1) holds if and
only if for every natural =, denoting :

Bi=a¢4+ (G —-Lb—a)ni=1, ...,n 1

we have the inequality :
6) 3 9@ X (@) < 3 (@) AL f(w)] }?ﬁl W(f() A f(ar)
i=1 i=1 i1 -

But we can prove a much stronger result which generalizes also Cauchy’s
inequality and Cebyfev’s inequality (see [6]). We say that the sequences
(@)= and (b)f, are synchrone if:

(&g — as) (b, — b)) >0, 1 <4,§ <.

Theorem 2. If the sequences ()i and (¢,)i, are strictly positive
and (@,/y,)i—1 and (p,/q.)i-, are synchrone, then : : ‘

(7) TPy Y > B Y YD
i=1 =1 =1 §i=1

Proof. As: .
(@dy: — slys) (igs — Pslgs) > 0

S ~_Integral and dis¢rete inequalities . 37 :

we have :

TiPeYi Qo= @1y Yo Py By Qo Ys Pr+ @ pryiq > 0
and adding consecutively for 4 - 1, .
we get (7). -
sl Remark 4. This is a discrete variant of an ini egral inequality of M.
}upwzur@ (see_ [Q]). Forp;, = w, an.d 0 = Y,i =1, ...,n, wehave Cauchy’s
]1jr,1tequahty and for y, — ¢, =1, 1 =1,... ; M, we have CebySev’s inequa-
-'y- R f

_ If the sequence (p,)i’; is convex, then the gequence (A pr., s
mereasing and taking ¢, =1 for 4 = 1, ..y %y, we have the following
result. which also implies (6): i
- Gong;equence. If the sequence (y,)r., is strictly positive, (m/y ).,
15 Increasing and (p,)}1} convex, then : )

-y % and then for j =1, ... »

Em;Al p{E:’/{ > Zg/‘AI]hE.’E,.
1= fe=1 $=al

LIS

To prove a discrete version of theorem C we need the following :
o & TL g . o . .
Lemma 2. If the sequence (b)ien i8 positive and decreasing, then -

A
Y., a, =2m, VE < n

L

fuml

smplies :
k]
Y @b, = mb,.
=1

Proof. Using Abel’s identity, we have :

ﬁ‘ n:] h 5
Y wb =y (}3 ai)(bk —be) + X 6iby >

=1 =1 \{o =

n—1
> m (Z (br — bpey) + b,,) = m.b;.

k=1

_ _.lheorem! 8. If the Sequences (@,)l-p and (2,){-, are positive and (Y3
19 stricily positive und mereasing, them

k k
A q ~ .
Y, @iz < 3 vie, VE =1, SO
il i=1
wmplies :
& X
wPee < Nyl e, Vh=1,..., n
t=1 i1

Jor 0 <p <gq.
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Proof. We use Holder’s inequality :

[ £ 1fr 1fs
zakbkg(}:a;) (Sb;@) y r>1, 1r 4+ 1/s =1
k=l A=1

A=1

for r = ¢/p and s = ¢/(¢g—p). So:

k q .3 q
():wa’ ) =( 3, (af 2hrfyr’) g2 /) <

i=1 t=1

0

) 13 . afr [ q/s [ : »
<(garzir) (3 0 ) =(};w%zi/y:—f’).

=1 f=1

k 9—p k k 14
( 5 ys’-z.-) - (z W — % gt — w@/y?ﬂ’) ;
fe= 1 )

i 1 i=1

k 9—p k q
(3 wa) < (g “)

i=1 i=1

because, by hypothesis

k
Y (i —af) 2 >0, VE
=1

and (1/y{~?);_; is decreasing, hence, by Lemma 2 :

sl

oo

(yi — i) &/yi7? > 0.

-

i
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