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WAVELET TRANSFORM, TOEPLITZ TYPE OPERATORS AND
DECOMPOSITION OF FUNCTIONS ON THE UPPER HALF-PLANE*

DING-XUAN ZHOU
(Hangzhou)

Abstract. In this paper we consider the decomposition of functions on the
upper half-plane into orthogonal subspaces which are isometric to L? (R) by
continuous wavelet transforms. A necessary and sufficient condition for such a
decomposition is given. From such a decomposition by general Laguerre polyno-
mials, we define a series of Toeplitz type operators and study the Schatten-Von
Neumann classes of these operators.

1. INTRODUCTION

Let G be the affine group {(z,y) : y > 0, = € R} with the group law
(@) (z,y) = (v z+2',yy’) . Tt is a locally compact nonunimodular group
with right Haar measure dug(z,y) = dxdy/y and left Haar measure
dur, (x,y) = drxdy/y?. Tt can be identified as the quotient group SL(2,R) by
SO(2,R) [g].

We consider the representation U of G on L? (R) defined by

(1.1) Upf(a') = y2 f(252).
By choosing a suitable function ¢» € L? (R), we can define an operator T?
from L2 (R) to L%~2 (U) as
(12) (1) (9) = C* (1, Ug0).
where Cy, is a constant depending only on ),
U={(z,y):y >0, z € R},

03 22 O)={7 @) s = ([ Le8lanay) <o)

Such an operator is called a “continuous wavelet transform” [1], [2]. It has
arisen independently in mathematical analysis and in the study of signals.

If TY is an isometry, we can define a subspace AY = TYL? (R) of L?>~2 (U),
which is isometric to L?(R). Recently, Jiang and Peng [5] have decom-
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posed L*»72(U) to be the orthogonal sum @5, (Ak ® flk) , where
Ap = AYF, Ay = AYF, and {F, ¥ }rez, is a class of functions called “ad-
missible wavelets” in L? (R). Then they defined the Toeplitz type operators
Tlf 1 = P, M, P with anti-analytic symbol b (z) on U. The membership in the
Schatten-Von Neumann class of these operators was also studied.

In this paper we give a necessary and sufficient condition for the decompo-

sition
> (U) = P T (12 (R)),
AEA
where {¢)*} cp is an arbitrary class of functions in L? (R). For some classes
of {#)*} ea which include the class of Jiang and Peng [5], we define the corre-
sponding Toeplitz type operators. We also give their Schatten-Von Neumann
classes S, for 1 < p < oo. The cases 0 < p < 1 will be discussed elsewhere.

2. DECOMPOSITION OF L?~2 (U)

For ¢ € L?(R), the continuous wavelet transform T is defined by (1.2,
where Cy, is a constant depending only on 9. First let us give a necessary and
sufficient condition for which T% is an isometry.

THEOREM 2.1. For ¢ € L?>(R), TV is defined by (1.2), then TV is an
isometry from L? (R) onto a subspace of L>~2(U), if and only if

[e%) 0
szww: AW2UJOJ Q.
/0 1 (w) [Pdw /Oo|w<>|d/u<

Proof. If we define

(2.1) f (@) =f(-2),
and

(2.2) Fu(x) =y 2 f(2).
we have

(TVF) (2y) = Cy 20y # £ ().

Therefore we have by taking Fourier transform for the first variable
1T fll 7220 =

_/Ooozg</]R‘wa($,y)\2dx>

- /ooo vty / (T2 ) (e

- /OOO v 2y [ 19O PIF (O Pac
:c¢1(/0m|f(<>\Qdc/ooolzz?(wczy/w/o !f<<)|2/0 b () Py ’y|>7

—0o0 —00
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thus we have

1T fll 220y = |1l z2R)s
for any f € L? (R), if and only if

o 0o
[ ) Paofr = [ 16 ) o el = €y < o
0

—0o0

The proof is complete. O

Therefore it is natural for us to define

AAW = {f cr®: [ 1f WP doo= [

—0o0

0

£ @) dwf] =1},
In the case ¢ € AAW, we have
(2.3) (TYf) (x,y) = Jy = f (x).
Now we shall give a left inverse operator for T%.
THEOREM 2.2. For o) € AAW, let 7% be the operator from L*>~2(U) to

L? (R) defined as

(2.4) (*F) (2) = /0 T Wy x F () (@) g2,

then 7% is bounded, and TVTY is the identity on L* (R).

Proof. For F € L>72(U), we have for ( € R

2

(TYF) ()] =

/O T8, (0 (F () (O v 2y
< /0 10 o) Py dy /0 TE ) (O Py 2y,

which implies

I Pl = |4 F) ey < ( [ CE ) ©) \Zy-%zy)z

oo 2
—( [ ot | rF<x,y>Fdw) = 1Pl s,

Therefore we have
7] < 1.



92 Ding-Xuan Zhou 4

Now for f € L? (R), we have

o0

(T ) () = [y (T f) (O v 2dy

S—

T 0 v (WO F () y 2y

0

© /0 1 w0 Py tdy = F (0,

Nl

I
~

thus 7¥TY is the identity on L? (R). O

For v € AAW, let AY = TYL?(R) be the subspace La o (U) isometric to
L? (R), we can define the orthogonal projection P¥ from L*~2(U) onto this
space, then we have the following explicit formula.

THEOREM 2.3. For 1, AY and PY¥ defined as above, we have for F €
L2,72 (U)

(2.5) PYF (z,y) = /000 Py %y * F (-, 0) (z) v 2dw.

Proof. We can prove (2.5 from the kernel given in [3]. Here we give a new
proof which is useful in the proof of our main result.
Denote

QF (w.9)= [ Byt < P (0 )0 o,

then for ' = TYf € AY, where f € L?(R), we have by taking Fourier
transform for the first variable

(QF)"(Cy) =
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On the other hand, for F 1 A¥, and any g € L? (R), we have
(eF.1%g) =

= [Tt ad [T 600 00 PG eyt 005 (0}

_ / o2y / v (00) GO F (C,v) d
0 R

:/Ooo v_zdv/R(ZWg)(ac,WF (z,v)dx

= (nga F)LQ»*Q(U) =0,

which implies that
QF 1L AY.

However note that QF (z,y) = ¢ % h (), where
/ Yo ¥ F (-, 0)(z)v"2dv = 7VF (),

we know that QF € AY, therefore we must have
QF =0= PYF.
Thus we must have Q = P¥, and we have proved (2.5)). ]

Now we can give the decomposition on L*»~2 (U) by the above method.
First we shall give the orthogonal condition.

THEOREM 2.4. For ¢, € AAW, AY = TYL2(R) defined as above, A% is
orthogonal to A¥, if and only if

2.6 - w tdw = dw = 0.
2o [ Fwi o = w w) o] dow
Proof. For f,g € L? (R), we have
(T¢f’ ng) = (@y * f, qﬁy * g)

= [ [ e ) £ )y (s (e

/f )9 (w /sO(yw)zﬁ(yw)yldydw,
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Thus we have (wa, ng) = 0 for any f,g € L?(R), if and only if 1}
holds. ]

THEOREM 2.5. Let {* : X € A} be a subset of AAW, AY" = T¥" L2 (R)
defined as above, then we have the orthogonal decomposition of L>~2(U) as

(2.7) L*72(U) = P Aa”’,

AEA
if and only if
1 1
{w 20N W) |uz0}yep  and {72 0N (@) <o} e
are orthogonal bases of L?[0,00) and L*(—o0,0] respectively.

Proof. As in the proof of Theorem by taking Fourier transform about
the first variable we have for F € L%~2(U)

1P F 3,20 :/ vdy / \(P’“F)W’y) [P

1

Qdy

Sufficiency: Suppose that {w‘%ﬂ)‘ (w) |520}/\€A and {]w|_% PN w) ‘wSO}AEA are
orthonormal bases of L?[0, 00) and L?(—oc, 0] respectively, we know from The-
orem [2.4| that {A%}\ca is orthogonal. We also have

Z HPT/JAFH;*%U) -

AEA
1 A 1. B 9
/ g\(/ v 29 (V) W2 F (w,v/w)v 1dv> ot
- . - e
/ %(/ 0|72 P (v) |w|2 F(w,v/w) |v] 1dv> "

:/0/0 (3| B (w, v/w) |02 dv dot
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// w2 F (w,y) Py 2w dy dw
; / / (Wl | (@,9) [Pyl dy dw

= ||FH%2772(U)7

> () =@ P L*R) = P A"
AEA AEA
Necessity: Suppose (2.7) holds, but we have 0 # ¢ € L2[0,00), which is

orthogonal to w_%wA (W) |w>0 for any A € A. Then from the above proof we
must have

w\»—t

(w, —v/w)|/ |v| )dedw

=

which implies

/Ooogp( )w %F(w,v/w) vt =0,

for any w € (0,00), F' € L>~2(U) . Therefore we must have ¢ = 0, which is a
contradiction, and our proof is complete. O

Thus we have given all the decomposition of L?~2 (U) by continuous wavelet
transforms.
Note that

{@n,k (z) = 2%90 2"z — k) }kzo,ne% {‘P"»k (2) }k>0,neZ
are orthonormal bases of L?[0,0) and L?(—o0, 0] respectively, where ¢ (z) =
X[0,1) ~ X[1,1), We can decompose L?>~2 (U) as follows.

For FF € L*»~2 (U), we have the orthogonal decomposition

F= Y PH(F

kEZ,1>0

where P*!(F) (x,y) can be determined by its Fourier transform for the first
variable:

1

. 1 o - _
(PFY (@.9) o = vhona () [ whons (o) F (w,0) 072,
0

and (PH'F)" (w,y) lu>0 can be written in the same way.
In the following sections we shall give another decomposition by means of
Laguerre polynomials.
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3. TOEPLITZ TYPE OPERATORS

Now suppose {t)*}rea C AAW satisfies L>~2 (U) = @ A¥". We can define
AEA

Toeplitz type operators Tb)‘ * as
(3.1) TM = PY M Pyy*
with anti-analytic symbol b (z) on U, here M, is the operator of multiplication
by b.
To characterize the Schatten-Von Neumann class S}, for the Toeplitz type

operators, we need the analytic Besov spaces By, (U) on U. The space By, (U)
(0 < p < 00) consists of all analytic functions on U for which the integral

’F’pp _ / }ymF(m) (z) ‘py*Qdm dy
U

is finite and Bo (U) is the Bloch space, i.e., F' (2) analytic on U and || F||g_ =
sup ‘ymF(m) (z)‘ is finite, here m is any integer such that m > 1/p.
zeU

If we compose TbA * with the isometries T% and 7%", we have tl’)\’“ =
TWT;"”, TY" € B(L*(R),L? (R)), and for f € L*(R), we have
(3.2)
A7
(tb #f) (C) =
1
2

- /0 yE (O y 2y (T TV 1) (¢, )

Y2 (YO (00) (b (+iv) Yt x £ () () v 2w

Z/OoyézﬁA (y¢)y2d

=

0
:/0 19 (y¢) [Py tdy /0 v (v() /Rf’ (C—=m) e V™34 (o) f (vn) dndo
Z/RB(C—U)f(n)A(C,n)dn,
where
(3.3) ACn) = / 0 (0¢) B (wm)e 09y,

Such an operator tb’\’“ is called “paracommutator” [4], [9].
Now let us choose a class {t* : k € Z, } in AAW as

(3.4) 9k (Q) = (AEE2mEDN T3 (4101 ) ™ o]z 2K LD (4],
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where {Lgmﬂ)}kez are the Laguerre polynomials [10]

5=0
which satisfy the orthonormal conditions:
(3.5) /00 e*memHLgmH)L,(me) (x)dx = W‘Skn
0
Then it is easy to verify that {wféﬁk (w)]wzo}keZ+ ({|w|7% Pk (w)|w§0}kez+)
respectively is an orthonormal basis of L?[0,00) (Lz(—oo, respectively.

Therefore we can construct the Toeplitz type operators as (3.1)) and obtain
the following main result.

THEOREM 3.1. Let Tf’l defined as above, k,l € Z,, then
(1) For k=1, we have
Tf’l is bounded, if and only if b € L™;
Tf’l is compact, if and only if b = 0.
(2) Fork # 1, we have
Tf’l € Sp, 1 <p< oo, ifand only if b € B, (U).

Proof. Note that T (%) is an isometry between A‘Z’Z(Awk) and L? (R), we
know that Tf ! satisfies one of the above statements, if and only if t’lf’l =

Tka Tl satisfies the same statement. From 1j we see that t’g’l is a para-
commutator [4], [0] with A% (¢,n) defined by ([3.3))
We can now compute A*! (¢, n) as follows:

ARL(¢n) =
_ / T (0B (om) e
0

= ClomClim /O (4o |¢))™2 (v|c])? e 2 L™ (40)¢])-

1 1
. (41} | )m+5 (v | )5672”|"|Lg2m+1) (411 | )67”(’770071&)
= CromCrmd®" (ICnl)™ -

. / ,02m+26—11(2|4\+2\77|+n—n)L](€2m+1) (4U lq )L](g2m+1) (41} In )U_ld’U
0

k !
= CramCram PTGy (K2 (mD) L
s=0 t=0

(1) / (401¢1)* (40 ] ) st @l =er2intin gy
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k l
= CraCrm 4™ (I00)™ Y > - (=4 (R () s
s=0 t=0

11 nl" (2161 = ¢ +2nl+n) (s+t+2m+ 1)
= CrmCrm®®™ " (ICn)™ (21¢] = ¢+ 2l +n) 72" 72

—s5—t—2m—2

(3.6)
ZZ s+t k+2m+1)(l+2m+1\(S+t+2m+1)!( I¢ )s( |n] )t
1—t ) STt 2[¢I—=C+2[nl+n/ \2[¢[—C+2[n[+n/ -
s=0t=0
In the domain {(¢,n) : {,n > 0}, we have
(3.7) ARE(¢, ) = CrmCrmd TR (S),
where for u > 0,
(3.8) hy!(u) =um (u+43)72" 2
ko1
k ! t4+2m+1)! ¢
DD (A (S () B () ()
s=0 t=0
— (u+3 —2m—k—1 qllc,l (w),

here qlf’l (u) is a polynomial with degree < m+1+k+1<2m+2+k+ 1.
Hence h’f’l € C*°[0,00), and we have

H hk,l /
H hllcl "

with a constant C},; ., depending only on k,[, and m.
On the other hand, we know from ([3.8])

YN, o) = Ck,lm;

HL < Ckim,

00 [0,00)

uhnolo Z Z s+t k+’€2£r;+1) ((l+%r_nt+l))w (%H)S(%ﬁ)t _
s=0 t=0
_ i k+2m+1) (Z+QT+1) (s+2;7;b+1)!
S=

(l+2m+1) k+2m+1 ( ) 7& 0.

Thus hkl is a nonzero rational function on [0, c0) and Akl (¢,m) 7é 0. Then we

know that the assumption A4 in [4] is satisfied for A1 . From , we also
know that A0 in [4] is satisfied.
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The expressions of A]f’l in the other three domains can be given in the same
way. From these formulas, it is easy to check that A1 and A2 in [4] are satisfied
for A]f’l (¢,m) .

As an example, we shall show Al in the domain {(¢,n) : {,n > 0}. In this
case, for A; = {¢ : ¢ € [2¢,2"71]}, Ai={C:Ce [2071,27%2]}, we have from
Lemma 3.9 in [4] that

k)l
IA Naraixa,) <

<C suwp  sup { ¢/ " DgDEAR (¢, n) |}
lol+IB1<2 ¢ceA; el

< ClChmCrm|42™ Y sup  sup  { ¢ "' DEDIRE (¢/m)
lo+BI<2 ¢eA;nel;

The next computation is now clear:
For (a, 8) = (,0), we have

sup  {C = (Y@ (/) |} < sup {Ju (PN () [}

CeA;me; u€(0,00)
— s {‘ (u -+ 3) 722k lma gkl () }} < Gy < 00,
u€(0,00)

where C} ;. is a constant depending only on k,! and m. Here we have used

the fact that q;ci (u) is a polynomial with degree < a+m+1+k+1 <
2m+2+k+1+ .
For (a, B) = (1,1), we have

kil k,l k,l
sup {[cl Il |[DLDRAEC/mI} < sup {(JulBi!) () |+ (RF)” () ])}
CeA; e, u€(0,00)
S C]/c,,l,m < Q.
For (a, B) = (0, ), we also have
su {’ Bl | DBk < R 2kl
sup " IDRRY(C/m) ] p < sup {([u(hy?) (u) | + [u?(h))" ()]
CeEA; nEA; y€(0,00)
S Cllﬂl,l,m < 0.
Thus we have proved that Al in [4] is satisfied for A% (¢,n).
In the same way, from Lemma 3.8 in [4], we can prove that for k # 1 A3

(1) in [4] is satisfied as follows:
For (o > 0, 0 < r < (p/8, we have

1S 1 (B(Gor) < B(Go) SCIChmCrm| 4™ sup vl sup {|DRY(S) ]}
al<2 CmEB(Go,2r)
Now from (3.3), we have for { =n >0, k # 1
A = [0 v = [ e @) ) dv =0,
0

0
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which implies A (1) = 0 for k # 1.
Hence from h]f’l € C*(0,00), for ¢,n € B((,2r)

() = ()~ (3)] < S ]EY,yy < SIOEY i £
For |a| > 1, we have

sup ){TW‘Dahlf’l(g)’} < 40ro Z Hui(hlf’l(u))(j)HL“’[%Q} o

¢nEB(Co,2r 0<i,j<2

Thus we have proved A3 (1) for {; > 0. For {5 < 0, the proof is almost the
same, and we shall omit it.

Our proof for (2) is now complete by the result in [4].

To prove (1), we need to check A8 in [4]. From (8.3), we have for ( =7 >
0, k=1

ARE(¢m) / g (00) F (0C)v o = / "1k (@) [Pt dw = 1.
0

0
On the other hand, note that A® € C> ([3,2] x [3,2]), we have A8 by [4].

2
Thus our proof of (1) is also complete since A, A2, A8 are satisfied. O

Hankel type operators can also be discussed as in [5], [6], and we have similar
results.
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