WAVELET TRANSFORM, TOEPLITZ TYPE OPERATORS AND DECOMPOSITION OF FUNCTIONS ON THE UPPER HALF-PLANE*

DING-XUAN ZHOU
(Hangzhou)

Abstract

In this paper we consider the decomposition of functions on the upper half-plane into orthogonal subspaces which are isometric to $L^{2}(\mathbb{R})$ by continuous wavelet transforms. A necessary and sufficient condition for such a decomposition is given. From such a decomposition by general Laguerre polynomials, we define a series of Toeplitz type operators and study the Schatten-Von Neumann classes of these operators.

1. INTRODUCTION

Let G be the affine group $\{(x, y): y>0, x \in \mathbb{R}\}$ with the group law $\left(x^{\prime}, y^{\prime}\right)(x, y)=\left(y^{\prime} x+x^{\prime}, y y^{\prime}\right)$. It is a locally compact nonunimodular group with right Haar measure $d \mu_{R}(x, y)=d x d y / y$ and left Haar measure $d \mu_{L}(x, y)=d x d y / y^{2}$. It can be identified as the quotient group $\operatorname{SL}(2, \mathbb{R})$ by $\mathrm{SO}(2, \mathbb{R})$ [8.

We consider the representation U of G on $L^{2}(\mathbb{R})$ defined by

$$
\begin{equation*}
U_{g} f\left(x^{\prime}\right)=y^{\frac{1}{2}} f\left(\frac{x^{\prime}-x}{y}\right) . \tag{1.1}
\end{equation*}
$$

By choosing a suitable function $\psi \in L^{2}(\mathbb{R})$, we can define an operator T^{ψ} from $L^{2}(\mathbb{R})$ to $L^{2,-2}(U)$ as

$$
\begin{equation*}
\left(T^{\psi} f\right)(g)=C_{\psi}^{-\frac{1}{2}}\left(f, U_{g} \psi\right) \tag{1.2}
\end{equation*}
$$

where C_{ψ} is a constant depending only on ψ,

$$
\begin{align*}
U & =\{(x, y): y>0, x \in \mathbb{R}\} \\
L^{2,-2}(U) & =\left\{f(x, y):\|f\|_{L^{2},-2}(U)=\left(\int_{U} \frac{|f(x, y)|^{2}}{y^{2}} d x d y\right)^{\frac{1}{2}}<\infty\right\} . \tag{1.3}
\end{align*}
$$

Such an operator is called a "continuous wavelet transform" [1], 2]. It has arisen independently in mathematical analysis and in the study of signals.

If T^{ψ} is an isometry, we can define a subspace $A^{\psi}=T^{\psi} L^{2}(\mathbb{R})$ of $L^{2,-2}(U)$, which is isometric to $L^{2}(\mathbb{R})$. Recently, Jiang and Peng [5] have decom-

[^0]posed $L^{2,-2}(U)$ to be the orthogonal sum $\bigoplus_{k=0}^{\infty}\left(A_{k} \oplus \bar{A}_{k}\right)$, where $A_{k}=A \psi^{k}, \bar{A}_{k}=A \bar{\psi}^{k}$, and $\left\{\psi^{k}, \psi^{k}\right\}_{k \in \mathbb{Z}_{+}}$is a class of functions called "admissible wavelets" in $L^{2}(\mathbb{R})$. Then they defined the Toeplitz type operators $T_{b}^{k, 1}=P_{k} M_{b} P_{1}$ with anti-analytic symbol $b(z)$ on U. The membership in the Schatten-Von Neumann class of these operators was also studied.

In this paper we give a necessary and sufficient condition for the decomposition

$$
L^{2,-2}(U)=\bigoplus_{\lambda \in \Lambda} T \psi^{\lambda}\left(L^{2}(\mathbb{R})\right),
$$

where $\left\{\psi^{\lambda}\right\}_{\lambda \in \Lambda}$ is an arbitrary class of functions in $L^{2}(\mathbb{R})$. For some classes of $\left\{\psi^{\lambda}\right\}_{\lambda \in \Lambda}$ which include the class of Jiang and Peng [5], we define the corresponding Toeplitz type operators. We also give their Schatten-Von Neumann classes S_{p} for $1<p \leq \infty$. The cases $0<p \leq 1$ will be discussed elsewhere.

2. DECOMPOSITION OF $L^{2,-2}(U)$

For $\psi \in L^{2}(\mathbb{R})$, the continuous wavelet transform T^{ψ} is defined by 1.2 , where C_{ψ} is a constant depending only on ψ. First let us give a necessary and sufficient condition for which T^{ψ} is an isometry.

Theorem 2.1. For $\psi \in L^{2}(\mathbb{R}), T^{\psi}$ is defined by $\sqrt{1.2}$, then T^{ψ} is an isometry from $L^{2}(\mathbb{R})$ onto a subspace of $L^{2,-2}(U)$, if and only if

$$
\int_{0}^{\infty}|\hat{\psi}(\omega)|^{2} d \omega / \omega=\int_{-\infty}^{0}|\hat{\psi}(\omega)|^{2} d \omega /|\omega|<\infty .
$$

Proof. If we define

$$
\begin{equation*}
\tilde{f}(x)=\overline{f(-x)}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{y}(x)=y^{-\frac{1}{2}} f\left(\frac{x}{y}\right) \tag{2.2}
\end{equation*}
$$

we have

$$
\left(T^{\psi} f\right)(x, y)=C_{\psi}^{-\frac{1}{2}} \tilde{\psi}_{y} * f(x)
$$

Therefore we have by taking Fourier transform for the first variable

$$
\begin{aligned}
& \left\|T^{\psi} f\right\|_{L^{2},-2}^{2}(U)= \\
& =\int_{0}^{\infty} \frac{d y}{y^{2}}\left(\int_{\mathbb{R}}\left|T^{\psi} f(x, y)\right|^{2} d x\right) \\
& =\int_{0}^{\infty} y^{-2} d y\left(\int_{\mathbb{R}}\left|\left(T^{\psi} f\right)^{\wedge}(\zeta, y)\right|^{2} d \zeta\right) \\
& =\int_{0}^{\infty} y^{-2} d y C_{\psi}^{-1} \int_{\mathbb{R}}|\hat{\tilde{\psi}}(\zeta)|^{2}|\hat{f}(\zeta)|^{2} d \zeta \\
& =C_{\psi}^{-1}\left(\int_{0}^{\infty}|\hat{f}(\zeta)|^{2} d \zeta \int_{0}^{\infty}|\hat{\psi}(y)|^{2} d y / y+\int_{-\infty}^{0}|\hat{f}(\zeta)|^{2} \int_{-\infty}^{0}|\hat{\psi}(y)|^{2} d y /|y|\right)
\end{aligned}
$$

thus we have

$$
\left\|T^{\psi} f\right\|_{L^{2,-2}(U)}=\|f\|_{L^{2}(\mathbb{R})}
$$

for any $f \in L^{2}(\mathbb{R})$, if and only if

$$
\int_{0}^{\infty}|\hat{\psi}(\omega)|^{2} d \omega / \omega=\int_{-\infty}^{0}|\hat{\psi}(\omega)|^{2} d \omega /|\omega|=C_{\psi}<\infty
$$

The proof is complete.
Therefore it is natural for us to define

$$
A A W=\left\{f \in L^{2}(\mathbb{R}): \int_{0}^{\infty}|f(\omega)|^{2} d \omega / \omega=\int_{-\infty}^{0}|f(\omega)|^{2} d \omega /|\omega|=1\right\}
$$

In the case $\psi \in A A W$, we have

$$
\begin{equation*}
\left(T^{\psi} f\right)(x, y)=\tilde{f}_{y} * f(x) \tag{2.3}
\end{equation*}
$$

Now we shall give a left inverse operator for T^{ψ}.
Theorem 2.2. For $\psi \in A A W$, let τ^{ψ} be the operator from $L^{2,-2}(U)$ to $L^{2}(\mathbb{R})$ defined as

$$
\begin{equation*}
\left(\tau^{\psi} F\right)(x)=\int_{0}^{\infty}\left(\psi_{y} * F(\cdot, y)\right)(x) y^{-2} d y \tag{2.4}
\end{equation*}
$$

then τ^{ψ} is bounded, and $\tau^{\psi} T^{\psi}$ is the identity on $L^{2}(\mathbb{R})$.
Proof. For $F \in L^{2,-2}(U)$, we have for $\zeta \in \mathbb{R}$

$$
\begin{aligned}
\left|\left(\tau^{\psi} F\right)^{\wedge}(\zeta)\right|^{2} & =\left|\int_{0}^{\infty} \hat{\psi}_{y}(\zeta)(F(\cdot, y))^{\wedge}(\zeta) y^{-2} d y\right|^{2} \\
& \leq \int_{0}^{\infty}|\hat{\psi}(y \zeta)|^{2} y^{-1} d y \int_{0}^{\infty}\left|(F(\cdot, y))^{\wedge}(\zeta)\right|^{2} y^{-2} d y
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left\|\tau^{\psi} F\right\|_{L^{2}(\mathbb{R})} & =\left\|\left(\tau^{\psi} F\right)^{\wedge}\right\|_{L^{2}(\mathbb{R})} \leq\left(\int_{\mathbb{R}} \int_{0}^{\infty}\left|(F(\cdot, y))^{\wedge}(\zeta)\right|^{2} y^{-2} d y\right)^{\frac{1}{2}} \\
& =\left(\int_{0}^{\infty} y^{-2} d y \int_{\mathbb{R}}|F(x, y)|^{2} d x\right)^{\frac{1}{2}}=\|F\|_{L^{2,-2}(U)}
\end{aligned}
$$

Therefore we have

$$
\left\|\tau^{\psi}\right\| \leq 1
$$

Now for $f \in L^{2}(\mathbb{R})$, we have

$$
\begin{aligned}
\left(\tau^{\psi} T^{\psi} f\right)^{\wedge}(\zeta) & =\int_{0}^{\infty} y^{\frac{1}{2}} \hat{\psi}(y \zeta)\left(T^{\psi} f\right)^{\wedge}(\zeta) y^{-2} d y \\
& =\int_{0}^{\infty} y^{\frac{1}{2}} \hat{\psi}(y \zeta) y^{\frac{1}{2}} \hat{\psi}(y \zeta) \hat{f}(\zeta) y^{-2} d y \\
& =\hat{f}(\zeta) \int_{0}^{\infty}|\hat{\psi}(y \zeta)|^{2} y^{-1} d y=\hat{f}(\zeta)
\end{aligned}
$$

thus $\tau^{\psi} T^{\psi}$ is the identity on $L^{2}(\mathbb{R})$.

For $\psi \in A A W$, let $A^{\psi}=T^{\psi} L^{2}(\mathbb{R})$ be the subspace $L_{2,-2}(U)$ isometric to $L^{2}(\mathbb{R})$, we can define the orthogonal projection P^{ψ} from $L^{2,-2}(U)$ onto this space, then we have the following explicit formula.

Theorem 2.3. For ψ, A^{ψ} and P^{ψ} defined as above, we have for $F \in$ $L^{2,-2}(U)$

$$
\begin{equation*}
P^{\psi} F(x, y)=\int_{0}^{\infty} \tilde{\psi}_{y} * \psi_{v} * F(\cdot, v)(x) v^{-2} d v . \tag{2.5}
\end{equation*}
$$

Proof. We can prove (2.5) from the kernel given in (3). Here we give a new proof which is useful in the proof of our main result.

Denote

$$
Q F(x, y)=\int_{0}^{\infty} \tilde{\psi}_{y} * \psi_{v} * F(\cdot, v)(\bar{x}) v^{-2} d v
$$

then for $F=T^{\psi} f \in A^{\psi}$, where $f \in L^{2}(\mathbb{R})$, we have by taking Fourier transform for the first variable

$$
\begin{aligned}
(Q F)^{\wedge}(\zeta, y) & =\int_{0}^{\infty} y^{\frac{1}{2}} \overline{\hat{\psi}(y \zeta)} v^{\frac{1}{2}} \hat{\psi}(v \zeta) \hat{F}(\zeta, v) v^{-2} d v \\
& =\int_{0}^{\infty} y^{\frac{1}{2}} \overline{\hat{\psi}}(y \zeta) v^{\frac{1}{2}} \hat{\psi}(v \zeta) v^{\frac{1}{2}} \bar{\psi}(v \zeta) \hat{f}(\zeta) v^{-2} d v \\
& =y^{\frac{1}{2}} \overline{\hat{\psi}}(y \zeta) \hat{f}(\zeta) \\
& =(\hat{\psi} * f(\cdot))^{\wedge}(\zeta)=(F(\cdot, y))^{\wedge}(\zeta) .
\end{aligned}
$$

Thus we have for $F \in A \psi$

$$
Q F=F=P^{\psi} F \text {. }
$$

On the other hand, for $F \perp A^{\psi}$, and any $g \in L^{2}(\mathbb{R})$, we have

$$
\left.\begin{array}{l}
\left(Q F, T^{\psi} g\right)= \\
=\int_{0}^{\infty} y^{-2} d y \int_{\mathbb{R}} d \zeta\left\{\int_{0}^{\infty} y^{\frac{1}{2}} \overline{\hat{\psi}(y \zeta)} v^{\frac{1}{2}} \hat{\psi}(v \zeta) F(\zeta, v) v^{-2} d v \cdot y^{\frac{1}{2}} \overline{\hat{\psi}(y \zeta)} \hat{g}(\zeta)\right. \\
=\int_{0}^{\infty} v^{-2} d v \int_{\mathbb{R}} v^{\frac{1}{2}} \hat{\psi}(v \zeta) \overline{\hat{g}(\zeta)} \hat{F}(\zeta, v) d \zeta \\
=\int_{0}^{\infty} v^{-2} d v \int_{\mathbb{R}} \overline{\left(T^{\psi} g\right)^{\wedge}(\zeta, v)} \hat{F}(\zeta, v) d \zeta \\
=\int_{0}^{\infty} v^{-2} d v \int_{\mathbb{R}} \overline{\left(T^{\psi} g\right)(x, v)} F(x, v) d x \\
=\left(T^{\psi} g, F\right)_{L^{2},-2}(U)
\end{array}\right) 0,0
$$

which implies that

$$
Q F \perp A^{\psi} .
$$

However note that $Q F(x, y)=\tilde{\psi} * h(x)$, where

$$
h(x)=\int_{0}^{\infty} \psi_{v} * F(\cdot, v)(x) v^{-2} d v=\tau^{\psi} F(x),
$$

we know that $Q F \in A^{\psi}$, therefore we must have

$$
Q F=0=P^{\psi} F \text {. }
$$

Thus we must have $Q=P^{\psi}$, and we have proved (2.5).
Now we can give the decomposition on $L^{2,-2}(U)$ by the above method. First we shall give the orthogonal condition.

Theorem 2.4. For $\varphi, \psi \in A A W, A^{\psi}=T^{\psi} L^{2}(\mathbb{R})$ defined as above, A^{φ} is orthogonal to A^{φ}, if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \overline{\tilde{\varphi}(\omega)} \hat{\psi}(\omega) \omega^{-1} d \omega=\int_{-\infty}^{0} \overline{\hat{\psi}(\omega)} \hat{\psi}(\omega)|\omega|^{-1} d \omega=0 . \tag{2.6}
\end{equation*}
$$

Proof. For $f, g \in L^{2}(\mathbb{R})$, we have

$$
\begin{aligned}
\left(T^{\varphi} f, T^{\psi} g\right) & =\left(\hat{\varphi}_{y} * f, \hat{\psi}_{y} * g\right) \\
& =\int_{0}^{\infty} y^{-2} d y \int_{\mathbb{R}} y^{\frac{1}{2}} \hat{\varphi}(y \omega) \hat{f}(\omega) y^{\frac{1}{2}} \overline{\overline{\hat{\psi}}(y \omega)} \hat{g}(\omega) d \omega \\
& =\int_{\mathbb{R}} \hat{f}(\omega) \overline{\hat{g}(\omega)} \int_{0}^{\infty} \overline{\hat{\varphi}(y \omega)} \hat{\psi}(y \omega) y^{-1} d y d \omega .
\end{aligned}
$$

Thus we have $\left(T^{\varphi} f, T^{\psi} g\right)=0$ for any $f, g \in L^{2}(\mathbb{R})$, if and only if 2.6 holds.

Theorem 2.5. Let $\left\{\psi^{\lambda}: \lambda \in \Lambda\right\}$ be a subset of $A A W, A^{\psi^{\lambda}}=T^{\psi^{\lambda}} L^{2}(\mathbb{R})$ defined as above, then we have the orthogonal decomposition of $L^{2,-2}(U)$ as

$$
\begin{equation*}
L^{2,-2}(U)=\bigoplus_{\lambda \in \Lambda} A^{\psi^{\lambda}}, \tag{2.7}
\end{equation*}
$$

if and only if

$$
\left\{\left.\omega^{-\frac{1}{2}} \hat{\psi}^{\lambda}(\omega)\right|_{\omega \geq 0}\right\}_{\lambda \in \Lambda} \quad \text { and } \quad\left\{\left.|\omega|^{-\frac{1}{2}} \hat{\psi}^{\lambda}(\omega)\right|_{\omega \leq 0}\right\}_{\lambda \in \Lambda}
$$

are orthogonal bases of $L^{2}[0, \infty)$ and $L^{2}(-\infty, 0]$ respectively.
Proof. As in the proof of Theorem [2.3, by taking Fourier transform about the first variable we have for $F \in L^{2,-2}(U)$

$$
\begin{aligned}
\left\|P^{\psi^{\lambda}} F\right\|_{L^{2},-2}(U) & =\int_{0}^{\infty} y^{-2} d y \int_{\mathbb{R}}\left|\left(P^{\psi^{\lambda}} F\right)^{\wedge}(\omega, y)\right|^{2} d \omega \\
= & \int_{0}^{\infty} y^{-2} d y \int_{\mathbb{R}}\left|\int_{0}^{\infty} y^{\frac{1}{2}} \hat{\psi}(y \omega) v^{\frac{1}{2}} \hat{\psi}^{\lambda}(v \omega) \hat{F}(\omega, v) v^{-2} d v\right|^{2} d \omega \\
= & \int_{\mathbb{R}}\left|\int_{0}^{\infty} v^{-\frac{1}{2}} \hat{\psi}^{\lambda}(v \omega) \hat{F}(\omega, v) v^{-1} d v\right|^{2} d \omega \\
= & \int_{0}^{\infty}\left(\int_{0}^{\infty} v^{\frac{1}{2}} \hat{\psi}^{\lambda}(v) \omega^{\frac{1}{2}} \hat{F}(\omega, v / \omega) v^{-1} d v\right)^{2} d \omega \\
& +\int_{-\infty}^{0}\left(\int_{0}^{\infty}|v|^{-\frac{1}{2}} \hat{\psi}^{\lambda}(-v)|\omega|^{\frac{1}{2}} \hat{F}(\omega,-v / \omega) v^{-1} d v\right)^{2} d \omega
\end{aligned}
$$

Sufficiency: Suppose that $\left\{\left.\omega^{-\frac{1}{2}} \hat{\psi}^{\lambda}(\omega)\right|_{\varepsilon \geq 0}\right\}_{\lambda \in \Lambda}$ and $\left\{\left.|\omega|^{-\frac{1}{2}} \psi^{\lambda}(\omega)\right|_{\omega \leq 0}\right\}_{\lambda \in \Lambda}$ are orthonormal bases of $L^{2}[0, \infty)$ and $L^{2}(-\infty, 0]$ respectively, we know from Theorem 2.4 that $\left\{A^{\psi}\right\}_{\lambda \in \Lambda}$ is orthogonal. We also have

$$
\begin{aligned}
& \sum_{\lambda \in \Lambda}\left\|P^{\psi^{\lambda}} F\right\|_{L^{2,-2}(U)}^{2}= \\
& =\int_{0}^{\infty} \sum_{\lambda \in \Lambda}\left(\int_{0}^{\infty} v^{-\frac{1}{2}} \hat{\psi}(v) \omega^{\frac{1}{2}} \hat{F}(\omega, v / \omega) v^{-1} d v\right)^{2} d \omega+ \\
& \quad+\int_{0}^{-\infty} \sum_{\lambda \in \Lambda}\left(\int_{0}^{-\infty}|v|^{-\frac{1}{2}} \hat{\psi}^{\lambda}(v)|\omega|^{\frac{1}{2}} \hat{F}(\omega, v / \omega)|v|^{-1} d v\right)^{2} d \omega \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(\omega^{\frac{1}{2}}|\hat{F}(\omega, v / \omega)| / v^{2}\right) d v d \omega+
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{-\infty}^{0} \int_{0}^{\infty}\left(|\omega|^{\frac{1}{2}}|\hat{F}(\omega,-v / \omega)| /|v|\right)^{2} d v d \omega \\
= & \int_{0}^{\infty} \int_{0}^{\infty}\left|\omega^{\frac{1}{2}} \hat{F}(\omega, y)\right|^{2} y^{-2} \omega^{-1} d y d \omega \\
& +\int_{-\infty}^{0} \int_{-\infty}^{0}|\omega|^{\frac{1}{2}}|\hat{F}(\omega, y)|^{2} y^{-2}|\omega|^{-1} d y d \omega \\
= & \|F\|_{L^{2,-2}(U)}^{2},
\end{aligned}
$$

which implies

$$
L^{2,-2}(U)=\bigoplus_{\lambda \in \Lambda} P^{\psi^{\lambda}} L^{2}(\mathbb{R})=\bigoplus_{\lambda \in \Lambda} A^{\psi^{\lambda}}
$$

Necessity: Suppose (2.7) holds, but we have $0 \neq \varphi \in L^{2}[0, \infty)$, which is orthogonal to $\left.\omega^{-\frac{1}{2}} \psi^{\lambda}(\omega)\right|_{\omega \geq 0}$ for any $\lambda \in \Lambda$. Then from the above proof we must have

$$
\int_{0}^{\infty} \varphi(v) \omega^{\frac{1}{2}} \hat{F}(\omega, v / \omega) v^{-1} d v=0
$$

for any $\omega \in(0, \infty), F \in L^{2,-2}(U)$. Therefore we must have $\varphi=0$, which is a contradiction, and our proof is complete.

Thus we have given all the decomposition of $L^{2,-2}(U)$ by continuous wavelet transforms.

Note that

$$
\left\{\varphi_{n, k}(x)=2^{\frac{n}{2}} \varphi\left(2^{n} x-k\right)\right\}_{k \geq 0, n \in \mathbb{Z}}, \quad\left\{\varphi_{n, k}(x)\right\}_{k>0, n \in \mathbb{Z}}
$$

are orthonormal bases of $L^{2}[0, \infty)$ and $L^{2}(-\infty, 0]$ respectively, where $\varphi(x)=$ $\chi_{\left[0, \frac{1}{2}\right)}-\chi_{\left[\frac{1}{2}, 1\right)}$, we can decompose $L^{2,-2}(U)$ as follows.

For $F \in L^{2,-2}(U)$, we have the orthogonal decomposition

$$
F=\sum_{k \in \mathbb{Z}, l \geq 0} P^{k, l}(F),
$$

where $P^{k, l}(F)(x, y)$ can be determined by its Fourier transform for the first variable:

$$
\left.\left(P^{k, l} F\right)^{\wedge}(\omega, y)\right|_{\omega \geq 0}=y^{\frac{1}{2}} \varphi_{k, l}(y \omega) \int_{0}^{\infty} v^{\frac{1}{2}} \sigma_{k, l}(v \omega) \hat{F}(\omega, v) v^{-2} d v
$$

and $\left.\left(P^{k, l} F\right)^{\wedge}(\omega, y)\right|_{\omega>0}$ can be written in the same way.
In the following sections we shall give another decomposition by means of Laguerre polynomials.

3. TOEPLITZ TYPE OPERATORS

Now suppose $\left\{\psi^{\lambda}\right\}_{\lambda \in \Lambda} \subset A A W$ satisfies $L^{2,-2}(U)=\bigoplus_{\lambda \in \Lambda} A^{\psi^{\lambda}}$. We can define Toeplitz type operators $T_{b}^{\lambda, \mu}$ as

$$
\begin{equation*}
T_{b}^{\lambda, \mu}=P^{\psi^{\lambda}} M P_{b} \psi^{\mu} \tag{3.1}
\end{equation*}
$$

with anti-analytic symbol $b(z)$ on U, here M_{b} is the operator of multiplication by b.

To characterize the Schatten-Von Neumann class S_{p} for the Toeplitz type operators, we need the analytic Besov spaces $B_{p}(U)$ on U. The space $B_{p}(U)$ $(0<p<\infty)$ consists of all analytic functions on U for which the integral

$$
|F|_{B_{p}}^{p}=\int_{U}\left|y^{m} F^{(m)}(z)\right|^{p} y^{-2} d x d y
$$

is finite and $B_{\infty}(U)$ is the Bloch space, i.e., $F(z)$ analytic on U and $\|F\|_{B_{\infty}}=$ $\sup _{z \in U}\left|y^{m} F^{(m)}(z)\right|$ is finite, here m is any integer such that $m>1 / p$.
If we compose $T_{b}^{\lambda, \mu}$ with the isometries T^{ψ} and $\tau^{\psi^{\lambda}}$, we have $t_{b}^{\lambda, \mu}:=$ $\tau^{\psi^{\lambda}} T_{b}^{\lambda, \mu}, T^{\psi^{\mu}} \in B\left(L^{2}(\mathbb{R}), L^{2}(\mathbb{R})\right)$, and for $f \in L^{2}(\mathbb{R})$, we have

$$
\begin{align*}
& \left(t_{b}^{\lambda, \mu} f\right)(\zeta)= \tag{3.2}\\
& =\int_{0}^{\infty} y^{\frac{1}{2}} \hat{\psi}^{\lambda}(y \zeta) y^{-2} d y\left(T_{b}^{\lambda, \mu} T^{\psi^{\eta}} f\right)^{\wedge}(\zeta, y) \\
& =\int_{0}^{\infty} y^{\frac{1}{2}} \hat{\psi}^{\lambda}(y \zeta) y^{-2} d y \int_{0}^{\infty} y^{\frac{1}{2}} \overline{\hat{\psi}^{\lambda}}(y \zeta) v^{\frac{1}{2}} \hat{\psi}^{\lambda}(v \zeta)\left(b(\cdot+\mathrm{i} v) \psi_{v}^{\mu} * f(\cdot)\right)^{\wedge}(\zeta) v^{-2} d v \\
& =\int_{0}^{\infty}\left|\hat{\psi}^{\lambda}(y \zeta)\right|^{2} y^{-1} d y \int_{0}^{\infty} v^{\frac{1}{2}} \hat{\psi}^{\lambda}(v \zeta) \int_{\mathbb{R}} \hat{b}(\zeta-\eta) e^{-\eta^{v(\eta-\zeta)}} v^{-\frac{3}{2}} \psi(v \eta) \hat{f}(v \eta) d \eta d v \\
& =\int_{\mathbb{R}} \hat{b}(\zeta-\eta) \hat{f}(\eta) A(\zeta, \eta) d \eta,
\end{align*}
$$

where

$$
\begin{equation*}
A(\zeta, \eta)=\int_{0}^{\infty} \hat{\psi}^{\lambda}(v \zeta) \overline{\hat{\psi}^{\mu}(v \eta)} e^{-v(\eta-\zeta)} v^{-1} d v \tag{3.3}
\end{equation*}
$$

Such an operator $t_{b}^{\lambda, \mu}$ is called "paracommutator" [4, 9].
Now let us choose a class $\left\{\psi^{k}: k \in \mathbb{Z}_{+}\right\}$in $A A W$ as

$$
\begin{equation*}
\hat{\psi}^{k}(\zeta)=\left(\frac{4(k+2 m+1)!}{k!}\right)^{-\frac{1}{2}}(4|\zeta|)^{m+\frac{1}{2}}|\zeta|^{\frac{1}{2}} e^{-2|\zeta|} L_{k}^{(2 m+1)}(4|\zeta|), \tag{3.4}
\end{equation*}
$$

where $\left\{L_{k}^{(2 m+1)}\right\}_{k \in \mathbb{Z}}$ are the Laguerre polynomials [10]

$$
L_{k}^{(2 m+1)}(x)=\sum_{s=0}^{k}\binom{k+2 m+1}{k-s} \frac{(-x)^{s}}{s!},
$$

which satisfy the orthonormal conditions:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} x^{2 m+1} L_{n}^{(2 m+1)} L_{k}^{(2 m+1)}(x) d x=\frac{(2 m+1+n)!}{n!} \delta_{k, n} \tag{3.5}
\end{equation*}
$$

Then it is easy to verify that $\left\{\left.\omega^{-\frac{1}{2}} \hat{\psi}^{k}(\omega)\right|_{\omega \geq 0}\right\}_{k \in \mathbb{Z}_{+}}\left(\left\{\left.|\omega|^{-\frac{1}{2}} \hat{\psi}^{k}(\omega)\right|_{\omega \leq 0}\right\}_{k \in \mathbb{Z}_{+}}\right)$ respectively is an orthonormal basis of $L^{2}[0, \infty)\left(L^{2}(-\infty, 0]\right)$ respectively. Therefore we can construct the Toeplitz type operators as (3.1) and obtain the following main result.

Theorem 3.1. Let $T_{b}^{k, l}$ defined as above, $k, l \in \mathbb{Z}_{+}$, then
(1) For $k=1$, we have
$T_{b}^{k, l}$ is bounded, if and only if $\bar{b} \in L^{\infty}$; $T_{b}^{k, l}$ is compact, if and only if $b=0$.
(2) For $k \neq 1$, we have

$$
T_{b}^{k, l} \in S_{p}, 1<p \leq \infty \text {, if and only if } \bar{b} \in B_{p}(U) .
$$

Proof. Note that $T^{l}\left(\tau^{k}\right)$ is an isometry between $A^{\hat{\psi}^{l}}\left(A^{\psi^{k}}\right)$ and $L^{2}(\mathbb{R})$, we know that $T_{b}^{k, l}$ satisfies one of the above statements, if and only if $t_{b}^{k, l}=$ $\tau^{k} T_{b}^{k, l} T^{l}$ satisfies the same statement. From (3.2), we see that $t_{b}^{k, l}$ is a paracommutator [4], 9 with $A^{k, l}(\zeta, \eta)$ defined by (3.3).

We can now compute $A^{k, l}(\zeta, \eta)$ as follows:

$$
\begin{aligned}
& A^{k, l}(\zeta, \eta)= \\
&= \int_{0}^{\infty} \hat{\psi}^{k}(v \zeta) \overline{\hat{\psi}^{l}(v \eta)} e^{-v(\eta-\zeta)} v^{-1} d v \\
&= C_{k, m} C_{l, m} \int_{0}^{\infty}(4 v|\zeta|)^{m+\frac{1}{2}}(v|\zeta|)^{\frac{1}{2}} e^{-2|v \zeta|} L_{k}^{(2 m+1)}(4 v|\zeta|) . \\
& \cdot(4 v|\eta|)^{m+\frac{1}{2}}(v|\eta|)^{\frac{1}{2}} e^{-2 v|\eta|} L_{1}^{(2 m+1)}(4 v|\eta|) e^{-v(\eta-\zeta)} v^{-1} d v \\
&= C_{k, m} C_{l, m} 4^{2^{m+1}}(|\zeta \eta|)^{m+1} . \\
& \cdot \int_{0}^{\infty} v^{2 m+2} e^{-v(2|\zeta|+2|\eta|+\eta-\eta)} L_{k}^{(2 m+1)}(4 v|\zeta|) L_{k}^{(2 m+1)}(4 v|\eta|) v^{-1} d v \\
&= C_{k, m} C_{1, m} 4^{2 m+1}(|\zeta \eta|)^{m+1} \sum_{s=0}^{k} \sum_{t=0}^{l}\left({\underset{k}{(k+2 m+1)}}_{k-s}^{\left({ }^{2 m+2 m+1)}\right) \frac{1}{1-t!!} .}\right. \\
& \quad \cdot(-1)^{s+t} \int_{0}^{\infty}(4 v|\zeta|)^{s}(4 v|\eta|)^{t} v^{2 m+1} e^{-v(2|\zeta|-\zeta+2|\eta|+\eta)} d v
\end{aligned}
$$

$$
\begin{aligned}
= & C_{k, 1} C_{l, m} 4^{2 m+1}(|\zeta \eta|)^{m+1} \sum_{s=0}^{k} \sum_{t=0}^{l}(-4)^{s+t}(\underset{k-s}{k+2 m+1})\left({ }_{1-t}^{l+2 m+1}\right) \frac{1}{\frac{1}{!t t}} . \\
& \cdot|\zeta|^{s}|\eta|^{t}(2|\zeta|-\zeta+2|\eta|+\eta)^{-s-t-2 m-2}(s+t+2 m+1)! \\
= & C_{k, m} C_{l, m} 4^{2 m+1}(|\zeta \eta|)^{m+1}(2|\zeta|-\zeta+2|\eta|+\eta)^{-2 m-2} .
\end{aligned}
$$

$$
\begin{equation*}
\cdot \sum_{s=0}^{k} \sum_{t=0}^{l}(-4)^{s+t}\binom{k+2 m+1}{k-s}\binom{l+2 m+1}{1-t} \frac{(s+t+2 m+1)!}{s!t!}\left(\frac{|\zeta|}{2|\zeta|-\zeta+2|\eta|+\eta}\right)^{s}\left(\frac{|\eta|}{2|\zeta|-\zeta+2|\eta|+\eta}\right)^{t} . \tag{3.6}
\end{equation*}
$$

In the domain $\{(\zeta, \eta): \zeta, \eta>0\}$, we have

$$
\begin{equation*}
A^{k, l}(\zeta, \eta)=C_{k, m} C_{l, m} 4^{2 m+1} h_{1}^{k, l}\left(\frac{\zeta}{\eta}\right), \tag{3.7}
\end{equation*}
$$

where for $u>0$,

$$
\begin{align*}
h_{1}^{k, l}(u)= & u^{m+1}(u+3)^{-2 m-2} . \tag{3.8}\\
& \cdot \sum_{s=0}^{k} \sum_{t=0}^{l}(-4)^{s+t}\binom{k+2 m+1}{k-s}\binom{l+2 m+1}{1-t} \frac{(s+t+2 m+1)!}{s!t!}\left(\frac{u}{u+3}\right)^{s}\left(\frac{1}{u+3}\right)^{t} \\
= & (u+3)^{-2 m-k-1} q_{1}^{k, l}(u),
\end{align*}
$$

here $q_{1}^{k, l}(u)$ is a polynomial with degree $\leq m+1+k+1<2 m+2+k+1$.
Hence $h_{1}^{k, l} \in C^{\infty}[0, \infty)$, and we have

$$
\begin{aligned}
\left\|\left(h_{1}^{k, l}\right)^{\prime}\right\|_{L_{\infty[0, \infty)}} & \leq C_{k, l, m}, \\
\left\|\left(h_{1}^{k, l}\right)^{\prime \prime}\right\|_{L_{\infty[0, \infty}} & \leq C_{k, l, m},
\end{aligned}
$$

with a constant $C_{k, l, m}$ depending only on k, l, and m.
On the other hand, we know from (3.8)

$$
\begin{aligned}
& \lim _{u \rightarrow \infty} \sum_{s=0}^{k} \sum_{t=0}^{l}(-4)^{s+t}\binom{k+2 m+1}{k-s}\binom{(l+2 m+1)}{1-t} \frac{(s+t+2 m+1)!}{s!t!}\left(\frac{u}{u+3}\right)^{s}\left(\frac{1}{u+3}\right)^{t}= \\
& =\sum_{s=0}^{k}(-4)^{s}\binom{k+2 m+1}{k-s}\binom{l+2 m+1}{1} \frac{(s+2 m+1)!}{s!} \\
& =\binom{l+2 m+1}{1} \frac{(k+2 m+1)!}{k!}(-3)^{k} \neq 0 .
\end{aligned}
$$

Thus $h_{1}^{k, l}$ is a nonzero rational function on $[0, \infty)$ and $A_{1}^{k, l}(\zeta, \eta) \neq 0$. Then we know that the assumption $A 4$ in [4] is satisfied for $A_{1}^{k, l}$. From 3.6), we also know that $A 0$ in [4] is satisfied.

The expressions of $A_{1}^{k, l}$ in the other three domains can be given in the same way. From these formulas, it is easy to check that A1 and A2 in [4] are satisfied for $A_{1}^{k, l}(\zeta, \eta)$.

As an example, we shall show $A 1$ in the domain $\{(\zeta, \eta): \zeta, \eta>0\}$. In this case, for $\Delta_{i}=\left\{\zeta: \zeta \in\left[2^{i}, 2^{i+1}\right]\right\}, \tilde{\Delta}_{i}=\left\{\zeta: \zeta \in\left[2^{i-1}, 2^{i+2}\right]\right\}$, we have from Lemma 3.9 in [4] that

$$
\begin{aligned}
& \left\|A^{k, l}\right\|_{M\left(\Delta_{i} \times \Delta_{j}\right)} \leq \\
& \leq C \sup _{|\alpha|+|\beta| \leq 2} \sup _{\zeta \in \tilde{\Delta}_{i}, \eta \in \tilde{\Delta}_{j}}\left\{|\zeta|^{|\alpha|}|\eta|^{|\beta|} D_{\zeta}^{\alpha} D_{\eta}^{\beta} A^{k, l}(\zeta, \eta) \mid\right\} \\
& \leq C\left|C_{k, m} C_{l, m}\right| 4^{2 m+1} \sup _{|\alpha+\beta| \leq 2} \sup _{\zeta \in \tilde{\Delta}_{i}, \eta \in \tilde{\Delta}_{j}}\left\{|\zeta|^{|\alpha|}|\eta|^{|\beta|} D_{\zeta}^{\alpha} D_{\eta}^{\beta} h_{1}^{k, l}(\zeta / \eta)\right\}
\end{aligned}
$$

The next computation is now clear:
For $(\alpha, \beta)=(\alpha, 0)$, we have

$$
\begin{aligned}
& \sup _{\zeta \in \tilde{\Delta}_{i}, \eta \in \tilde{\Delta}_{j}}\left\{\zeta^{|\alpha|} \eta^{-\alpha}\left|\left(h_{1}^{k, l}\right)^{(\alpha)}(\zeta / \eta)\right|\right\} \leq \sup _{u \in(0, \infty)}\left\{\left|u^{\alpha}\left(h_{1}^{k, l}\right)^{(\alpha)}(u)\right|\right\} \\
= & \sup _{u \in(0, \infty)}\left\{\left|(u+3)^{-2 m-2-k-1-\alpha} q_{2, \alpha}^{k, l}(u)\right|\right\} \leq C_{k, l, m}^{\prime}<\infty
\end{aligned}
$$

where $C_{k, l, m}^{\prime}$ is a constant depending only on k, l and m. Here we have used the fact that $q_{2, \alpha}^{k, 1}(u)$ is a polynomial with degree $\leq \alpha+m+1+k+1<$ $2 m+2+k+1+\alpha$.

For $(\alpha, \beta)=(1,1)$, we have

$$
\begin{aligned}
\sup _{\zeta \in \tilde{\Delta}_{j}, \eta \in \tilde{\Delta}_{j}}\left\{|\zeta||\eta|\left|D_{\zeta}^{1} D_{\eta}^{1} h_{1}^{k, l}(\zeta / \eta)\right|\right\} & \leq \sup _{u \in(0, \infty)}\left\{\left(\left|u\left(h_{1}^{k, l}\right)^{\prime}(u)\right|+\left|u^{2}\left(h_{1}^{k, l}\right)^{\prime \prime}(u)\right|\right)\right\} \\
& \leq C_{k, l, m}^{\prime \prime}<\infty
\end{aligned}
$$

For $(\alpha, \beta)=(0, \beta)$, we also have

$$
\begin{aligned}
\sup _{\zeta \in \tilde{\Delta}_{i}, \eta \in \tilde{\Delta}_{j}}\left\{|\eta|^{|\beta|}\left|D_{\eta}^{\beta} h_{1}^{k, l}(\zeta / \eta)\right|\right\} & \leq \sup _{y \in(0, \infty)}\left\{\left(\left|u\left(h_{1}^{k, l}\right)^{\prime}(u)\right|+\left|u^{2}\left(h_{1}^{k, l}\right)^{\prime \prime}(u)\right|\right)\right\} \\
& \leq C_{k, l, m}^{\prime \prime}<\infty
\end{aligned}
$$

Thus we have proved that A1 in [4] is satisfied for $A^{k, l}(\zeta, \eta)$.
In the same way, from Lemma 3.8 in [4], we can prove that for $k \neq 1 \mathrm{~A} 3$ (1) in [4] is satisfied as follows:

For $\zeta_{0}>0,0<r<\zeta_{0} / 8$, we have

$$
\left\|A^{k, l}\right\|_{M\left(B\left(\zeta_{0}, r\right) \times B\left(\zeta_{0}, r\right)\right)} \leq C\left|C_{k, m} C_{l, m}\right| 4^{2 m+1} \sup _{|\alpha| \leq 2} r^{|\alpha|} \sup _{\zeta, \eta \in B\left(\zeta_{0}, 2 r\right)}\left\{\left|D^{\alpha} h_{1}^{k, l}\left(\frac{\zeta}{\eta}\right)\right|\right\}
$$

Now from (3.3), we have for $\zeta=\eta>0, k \neq 1$

$$
A^{k, l}(\zeta, \zeta)=\int_{0}^{\infty} \hat{\psi}^{k}(v \zeta) \hat{\psi}^{l}(v \zeta) v^{-1} d v=\int_{0}^{\infty} v^{-\frac{1}{2}} \hat{\psi}^{k}(v) v^{-\frac{1}{2}} \hat{\psi}(v) d v=0
$$

which implies $h_{1}^{k, l}(1)=0$ for $k \neq 1$.
Hence from $h_{1}^{k, l} \in C^{\infty}(0, \infty)$, for $\zeta, \eta \in B\left(\zeta_{0}, 2 r\right)$
$\left|h_{1}^{k, l}\left(\frac{\zeta}{\eta}\right)\right|=\left|h_{1}^{k, l}\left(\frac{\zeta}{\eta}\right)-h_{1}^{k, l}\left(\frac{\eta}{\eta}\right)\right| \leq\left|\frac{\zeta-\eta}{\eta}\right| \cdot\left\|\left(h_{1}^{k, l}\right)^{\prime}\right\|_{L_{\infty}\left[\frac{1}{2}, 2\right]} \leq 8\left\|\left(h_{1}^{k, l}\right)^{\prime}\right\|_{L_{\infty}\left[\frac{1}{2}, 2\right]} \cdot \frac{r}{\zeta_{0}}$.
For $|\alpha| \geq 1$, we have

$$
\sup _{\zeta, \eta \in B\left(\zeta_{0}, 2 r\right)}\left\{r^{|\alpha|}\left|D^{\alpha} h_{1}^{k, l}\left(\frac{\zeta}{\eta}\right)\right|\right\} \leq 40 r_{0} \sum_{0 \leq i, j \leq 2}\left\|u^{i}\left(h_{1}^{k, l}(u)\right)^{(j)}\right\|_{L_{\infty}\left[\frac{1}{2}, 2\right]} \cdot \zeta_{0}
$$

Thus we have proved A3 (1) for $\zeta_{0}>0$. For $\zeta_{0}<0$, the proof is almost the same, and we shall omit it.

Our proof for (2) is now complete by the result in [4].
To prove (1), we need to check A8 in (4]. From (3.3), we have for $\zeta=\eta>$ $0, k=1$

$$
A^{k, 1}(\zeta, \eta) \int_{0}^{\infty} \hat{\psi}^{k}(v \zeta) \overline{\hat{\psi}^{k}(v \zeta)} v^{-1} d v=\int_{0}^{\infty}\left|\hat{\psi}^{k}(\omega)\right|^{2} \omega^{-1} d \omega=1
$$

On the other hand, note that $A^{k, l} \in C^{\infty}\left(\left[\frac{1}{2}, 2\right] \times\left[\frac{1}{2}, 2\right]\right)$, we have A8 by [4].
Thus our proof of (1) is also complete since A_{1}, A_{2}, A8 are satisfied.
Hankel type operators can also be discussed as in [5], [6], and we have similar results.

REFERENCES

[1] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory, 36 (1990), 961-1005. ©
[2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 41 (1983), 909-996. [
[3] A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representation II: examples, Ann. Inst. Henri Poincaré, 45 (1986), 293-309.
[4] S. Janson and J. Peetre, Paracommutator-boundedness and Schatten-operties, Trans. Amer. Math. Soc., 305 (1988), 467-504. [
[5] Q. Jiang and L. Peng; Wavelet transform and Hankel-Toeplitz operators; Preprint. ($\mathbb{1}$
[6] Q. Jiang and L. Peng, Toeplitz and Hankel type operators on the upper half-plane, Preprint. [̄]
[7] Y. Meyer, Ondelettes et opérateurs, Hermann (1990).
[8] T. Paul, Functions analytic on the half-plane as quantum mechanical states, J. Math. Phys. 25 (1985), 3252-3263. ©
[9] L. Peng, Paracommutator of Schatten-Von Neumann class $S_{p}, 0<p<1$, Math. Scand., 61 (1987), 68-92. ■
[10] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publications, Vol. 23 (1939).

Received 10.XI. 1991
Department of Mathematics, Zhejiang University
Advanced Institute of Mathematics, Hangzhou, Zhejiang
P.R. China, 310027

[^0]: *Supported by National Science Foundation and Zhejiang Provincial Science Foundation of China.

