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WAVELET TRANSFORM, TOEPLITZ TYPE OPERATORS AND

DECOMPOSITION OF FUNCTIONS ON THE UPPER HALF-PLANE∗

DING-XUAN ZHOU
(Hangzhou)

Abstract. In this paper we consider the decomposition of functions on the
upper half-plane into orthogonal subspaces which are isometric to L2 (R) by
continuous wavelet transforms. A necessary and sufficient condition for such a
decomposition is given. From such a decomposition by general Laguerre polyno-
mials, we define a series of Toeplitz type operators and study the Schatten-Von
Neumann classes of these operators.

1. INTRODUCTION

Let G be the affine group {(x, y) : y > 0, x ∈ R} with the group law
(x′, y′) (x, y) = (y′ x+ x′, yy′) . It is a locally compact nonunimodular group
with right Haar measure dµR (x, y) = dxdy/y and left Haar measure
dµL (x, y) = dxdy/y2. It can be identified as the quotient group SL(2,R) by
SO(2,R) [8].

We consider the representation U of G on L2 (R) defined by

(1.1) Ugf(x′) = y
1
2 f
(
x′−x
y

)
.

By choosing a suitable function ψ ∈ L2 (R) , we can define an operator Tψ

from L2 (R) to L2,−2 (U) as

(1.2)
(
Tψf

)
(g) = C

− 1
2

ψ (f, Ugψ) ,

where Cψ is a constant depending only on ψ,

U = {(x, y) : y > 0, x ∈ R},

L2,−2 (U)=
{
f (x, y) : ‖f‖L2,−2(U) =

(∫
U

|f(x,y)|2
y2

dxdy
) 1

2
<∞

}
.(1.3)

Such an operator is called a “continuous wavelet transform” [1], [2]. It has
arisen independently in mathematical analysis and in the study of signals.

If Tψ is an isometry, we can define a subspace Aψ = TψL2 (R) of L2,−2 (U) ,
which is isometric to L2 (R) . Recently, Jiang and Peng [5] have decom-
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posed L2,−2 (U) to be the orthogonal sum
⊕∞

k=0

(
Ak ⊕ Āk

)
, where

Ak = Aψk, Āk = Aψ̄k, and {ψk, ψk}k∈Z+ is a class of functions called “ad-

missible wavelets” in L2 (R) . Then they defined the Toeplitz type operators

T k,1b = PkMbP1 with anti-analytic symbol b (z) on U. The membership in the
Schatten-Von Neumann class of these operators was also studied.

In this paper we give a necessary and sufficient condition for the decompo-
sition

L2,−2 (U) =
⊕
λ∈Λ

Tψλ
(
L2 (R)

)
,

where {ψλ}λ∈Λ is an arbitrary class of functions in L2 (R) . For some classes
of {ψλ}λ∈Λ which include the class of Jiang and Peng [5], we define the corre-
sponding Toeplitz type operators. We also give their Schatten-Von Neumann
classes Sp for 1 < p ≤ ∞. The cases 0 < p ≤ 1 will be discussed elsewhere.

2. DECOMPOSITION OF L2,−2 (U)

For ψ ∈ L2 (R) , the continuous wavelet transform Tψ is defined by (1.2),
where Cψ is a constant depending only on ψ. First let us give a necessary and

sufficient condition for which Tψ is an isometry.

Theorem 2.1. For ψ ∈ L2 (R) , Tψ is defined by (1.2), then Tψ is an
isometry from L2 (R) onto a subspace of L2,−2 (U) , if and only if∫ ∞

0
|ψ̂ (ω) |2dω/ω =

∫ 0

−∞
|ψ̂ (ω) |2dω/|ω| <∞.

Proof. If we define

(2.1) f̃ (x) = f (−x),

and

(2.2) fy (x) = y−
1
2 f
(
x
y

)
.

we have (
Tψf

)
(x, y) = C

− 1
2

ψ ψ̃y ∗ f (x) .

Therefore we have by taking Fourier transform for the first variable

‖Tψf‖2L2,−2(U) =

=

∫ ∞
0

dy
y2

(∫
R

∣∣Tψf (x, y)
∣∣2dx)

=

∫ ∞
0

y−2dy
(∫

R

∣∣(Tψf )̂ (ζ, y)
∣∣2dζ)

=

∫ ∞
0

y−2dyC−1
ψ

∫
R
| ˆ̃ψ (ζ) |2|f̂ (ζ) |2dζ

= C−1
ψ

(∫ ∞
0
|f̂ (ζ) |2dζ

∫ ∞
0
|ψ̂ (y) |2dy/y +

∫ 0

−∞
|f̂ (ζ) |2

∫ 0

−∞
|ψ̂ (y) |2dy/ |y|

)
,
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thus we have

‖Tψf‖L2,−2(U) = ‖f‖L2(R),

for any f ∈ L2 (R) , if and only if∫ ∞
0
|ψ̂ (ω) |2dω/ω =

∫ 0

−∞
|ψ̂ (ω) |2dω/ |ω| = Cψ <∞.

The proof is complete. �

Therefore it is natural for us to define

AAW =

{
f ∈ L2 (R) :

∫ ∞
0
|f (ω)|2 dω/ω =

∫ 0

−∞
|f (ω)|2 dω/|ω| = 1

}
.

In the case ψ ∈ AAW, we have

(2.3)
(
Tψf

)
(x, y) = f̃y ∗ f (x) .

Now we shall give a left inverse operator for Tψ.

Theorem 2.2. For ψ ∈ AAW, let τψ be the operator from L2,−2 (U) to
L2 (R) defined as

(2.4)
(
τψF

)
(x) =

∫ ∞
0

(ψy ∗ F (·, y)) (x) y−2dy,

then τψ is bounded, and τψTψ is the identity on L2 (R) .

Proof. For F ∈ L2,−2 (U) , we have for ζ ∈ R

∣∣(τψF )̂ (ζ)
∣∣2 =

∣∣∣∣∫ ∞
0

ψ̂y (ζ) (F (·, y))ˆ(ζ) y−2dy

∣∣∣∣2
≤
∫ ∞

0
|ψ̂ (yζ) |2y−1dy

∫ ∞
0

∣∣ (F (·, y))ˆ(ζ)
∣∣2y−2dy,

which implies

‖τψF‖L2(R) = ‖(τψF )̂ ‖L2(R) ≤
(∫

R

∫ ∞
0

∣∣ (F (·, y))ˆ(ζ)
∣∣2y−2dy

) 1
2

=

(∫ ∞
0

y−2dy

∫
R
|F (x, y)|2 dx

) 1
2

= ‖F‖L2,−2(U).

Therefore we have

‖τψ‖ ≤ 1.
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Now for f ∈ L2 (R), we have

(
τψTψf

)̂
(ζ) =

∫ ∞
0

y
1
2 ψ̂(yζ)

(
Tψf

)̂
(ζ) y−2dy

=

∫ ∞
0

y
1
2 ψ̂ (yζ) y

1
2 ψ̂ (yζ)f̂ (ζ) y−2dy

= f̂ (ζ)

∫ ∞
0
|ψ̂ (yζ) |2y−1dy = f̂ (ζ) ,

thus τψTψ is the identity on L2 (R) . �

For ψ ∈ AAW, let Aψ = TψL2 (R) be the subspace L2,−2 (U) isometric to

L2 (R) , we can define the orthogonal projection Pψ from L2,−2 (U) onto this
space, then we have the following explicit formula.

Theorem 2.3. For ψ,Aψ and Pψ defined as above, we have for F ∈
L2,−2 (U)

(2.5) PψF (x, y) =

∫ ∞
0

ψ̃y ∗ ψv ∗ F (·, v) (x) v−2dv.

Proof. We can prove (2.5) from the kernel given in [3]. Here we give a new
proof which is useful in the proof of our main result.

Denote

QF (x, y) =

∫ ∞
0

ψ̃y ∗ ψv ∗ F (·, v) (x̄) v−2dv,

then for F = Tψf ∈ Aψ, where f ∈ L2 (R) , we have by taking Fourier
transform for the first variable

(QF )ˆ(ζ, y) =

∫ ∞
0

y
1
2 ψ̂ (yζ)v

1
2 ψ̂ (vζ) F̂ (ζ, v) v−2dv

=

∫ ∞
0

y
1
2 ψ̂ (yζ)v

1
2 ψ̂ (vζ) v

1
2 ψ̂ (vζ)f̂ (ζ) v−2dv

= y
1
2 ψ̂ (yζ)f̂ (ζ)

=
(
ψ̂ ∗ f (·)

)̂
(ζ) = (F (·, y))ˆ(ζ) .

Thus we have for F ∈ Aψ

QF = F = PψF.
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On the other hand, for F ⊥ Aψ, and any g ∈ L2 (R), we have(
QF, Tψg

)
=

=

∫ ∞
0

y−2dy

∫
R
dζ

{∫ ∞
0

y
1
2 ψ̂ (yζ)v

1
2 ψ̂ (vζ)F (ζ, v)v−2dv ·y

1
2 ψ̂ (yζ)ĝ (ζ)

}
=

∫ ∞
0

v−2dv

∫
R
v

1
2 ψ̂ (vζ) ĝ (ζ)F̂ (ζ, v) dζ

=

∫ ∞
0

v−2dv

∫
R

(Tψg)ˆ(ζ, v)F̂ (ζ, v) dζ

=

∫ ∞
0

v−2dv

∫
R

(Tψg) (x, v)F (x, v) dx

=
(
Tψg, F

)
L2,−2(U)

= 0,

which implies that
QF ⊥ Aψ.

However note that QF (x, y) = ψ̃ ∗ h (x) , where

h (x) =

∫ ∞
0

ψv ∗ F (·, v)(x)v−2dv = τψF (x) ,

we know that QF ∈ Aψ, therefore we must have

QF = 0 = PψF.

Thus we must have Q = Pψ, and we have proved (2.5). �

Now we can give the decomposition on L2,−2 (U) by the above method.
First we shall give the orthogonal condition.

Theorem 2.4. For ϕ,ψ ∈ AAW, Aψ = TψL2 (R) defined as above, Aϕ is
orthogonal to Aϕ, if and only if

(2.6)

∫ ∞
0

ϕ̃ (ω)ψ̂ (ω)ω−1dω =

∫ 0

−∞
ψ̂ (ω)ψ̂ (ω) |ω|−1 dω = 0.

Proof. For f, g ∈ L2 (R) , we have(
Tϕf, Tψg

)
=
(
ϕ̂y ∗ f, ψ̂y ∗ g

)
=

∫ ∞
0

y−2dy

∫
R
y

1
2 ϕ̂ (yω) f̂ (ω) y

1
2 ψ̂ (yω)ĝ (ω)dω

=

∫
R
f̂ (ω) ĝ (ω)

∫ ∞
0

ϕ̂ (yω)ψ̂ (yω) y−1dy dω.
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Thus we have
(
Tϕf, Tψg

)
= 0 for any f, g ∈ L2 (R) , if and only if (2.6)

holds. �

Theorem 2.5. Let {ψλ : λ ∈ Λ} be a subset of AAW , Aψ
λ

= Tψ
λ
L2 (R)

defined as above, then we have the orthogonal decomposition of L2,−2 (U) as

(2.7) L2,−2 (U) =
⊕
λ∈Λ

Aψ
λ
,

if and only if{
ω−

1
2 ψ̂λ (ω) |ω≥0

}
λ∈Λ

and
{
|ω|−

1
2 ψ̂λ (ω) |ω≤0

}
λ∈Λ

are orthogonal bases of L2[0,∞) and L2(−∞, 0] respectively.

Proof. As in the proof of Theorem 2.3, by taking Fourier transform about
the first variable we have for F ∈ L2,−2 (U)

‖PψλF‖2L2,−2(U) =

∫ ∞
0

y−2dy

∫
R

∣∣(PψλF )̂ (ω, y)
∣∣2dω

=

∫ ∞
0
y−2dy

∫
R

∣∣∣∣∫ ∞
0
y

1
2 ψ̂ (yω)v

1
2 ψ̂λ(vω) F̂ (ω, v) v−2dv

∣∣∣∣2dω
=

∫
R

∣∣∣∣∫ ∞
0

v−
1
2 ψ̂λ (vω) F̂ (ω, v) v−1dv

∣∣∣∣2 dω
=

∫ ∞
0

(∫ ∞
0

v
1
2 ψ̂λ (v)ω

1
2 F̂
(
ω, v/ω

)
v−1dv

)2

dω

+

∫ 0

−∞

(∫ ∞
0
|v|−

1
2 ψ̂λ (−v) |ω|

1
2 F̂ (ω,−v/ω) v−1dv

)2

dω.

Sufficiency: Suppose that
{
ω−

1
2 ψ̂λ (ω)|ε≥0

}
λ∈Λ

and
{
|ω|−

1
2 ψλ(ω)|ω≤0

}
λ∈Λ

are

orthonormal bases of L2[0,∞) and L2(−∞, 0] respectively, we know from The-
orem 2.4 that {Aψ}λ∈Λ is orthogonal. We also have∑

λ∈Λ

∥∥PψλF∥∥2

L2,−2(U)
=

=

∫ ∞
0

∑
λ∈Λ

(∫ ∞
0

v−
1
2 ψ̂ (v)ω

1
2 F̂ (ω, v/ω) v−1dv

)2

dω+

+

∫ −∞
0

∑
λ∈Λ

(∫ −∞
0

|v|−
1
2 ψ̂λ (v) |ω|

1
2 F̂
(
ω, v/ω

)
|v|−1 dv

)2

dω

=

∫ ∞
0

∫ ∞
0

(
ω

1
2

∣∣F̂ (ω, v/ω)∣∣/v2
)
dv dω+
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+

∫ 0

−∞

∫ ∞
0

(
|ω|

1
2
∣∣F̂ (ω,−v/ω)∣∣/ |v|)2

dv dω

=

∫ ∞
0

∫ ∞
0

∣∣ω 1
2 F̂ (ω, y) |2y−2ω−1dy dω

+

∫ 0

−∞

∫ 0

−∞
|ω|

1
2
∣∣F̂ (ω, y)

∣∣2y−2|ω|−1dy dω

= ‖F‖2L2,−2(U),

which implies

L2,−2 (U) =
⊕
λ∈Λ

Pψ
λ
L2 (R) =

⊕
λ∈Λ

Aψ
λ
.

Necessity : Suppose (2.7) holds, but we have 0 6= ϕ ∈ L2[0,∞), which is

orthogonal to ω−
1
2ψλ (ω) |ω≥0 for any λ ∈ Λ. Then from the above proof we

must have ∫ ∞
0

ϕ (v)ω
1
2 F̂ (ω, v/ω) v−1dv = 0,

for any ω ∈ (0,∞) , F ∈ L2,−2 (U) . Therefore we must have ϕ = 0, which is a
contradiction, and our proof is complete. �

Thus we have given all the decomposition of L2,−2 (U) by continuous wavelet
transforms.

Note that{
ϕn,k (x) = 2

n
2 ϕ (2nx− k)

}
k≥0,n∈Z,

{
ϕn,k (x)

}
k>0,n∈Z

are orthonormal bases of L2[0,∞) and L2(−∞, 0] respectively, where ϕ (x) =
χ[0, 1

2
) − χ[ 1

2
,1), we can decompose L2,−2 (U) as follows.

For F ∈ L2,−2 (U) , we have the orthogonal decomposition

F =
∑

k∈Z,l≥0

P k,l (F ) ,

where P k,l (F ) (x, y) can be determined by its Fourier transform for the first
variable:

(P k,lF )̂ (ω, y) |ω≥0 = y
1
2ϕk,l (yω)

∫ ∞
0

v
1
2σk,l (vω) F̂ (ω, v) v−2dv,

and (P k,lF )̂ (ω, y) |ω>0 can be written in the same way.
In the following sections we shall give another decomposition by means of

Laguerre polynomials.
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3. TOEPLITZ TYPE OPERATORS

Now suppose {ψλ}λ∈Λ ⊂ AAW satisfies L2,−2 (U) =
⊕
λ∈Λ

Aψ
λ
. We can define

Toeplitz type operators T λ,µb as

(3.1) T λ,µb = Pψ
λ
MPbψ

µ

with anti-analytic symbol b (z) on U, here Mb is the operator of multiplication
by b.

To characterize the Schatten-Von Neumann class Sp for the Toeplitz type
operators, we need the analytic Besov spaces Bp (U) on U. The space Bp (U)
(0 < p <∞) consists of all analytic functions on U for which the integral

|F |pBp =

∫
U

∣∣ymF (m) (z)
∣∣py−2dx dy

is finite and B∞ (U) is the Bloch space, i.e., F (z) analytic on U and ‖F‖B∞ =

sup
z∈U

∣∣ymF (m) (z)
∣∣ is finite, here m is any integer such that m > 1/p.

If we compose T λ,µb with the isometries Tψ and τψ
λ
, we have tλ,µb :=

τψ
λ
T λ,µb , Tψ

µ ∈ B
(
L2 (R) , L2 (R)

)
, and for f ∈ L2 (R) , we have

(
tλ,µb f

)
(ζ) =

(3.2)

=

∫ ∞
0
y

1
2 ψ̂λ (yζ) y−2dy

(
T λ,µb Tψ

η
f
)̂

(ζ, y)

=

∫ ∞
0
y

1
2 ψ̂λ (yζ) y−2dy

∫ ∞
0
y

1
2 ψ̂λ (yζ)v

1
2 ψ̂λ (vζ)

(
b (·+iv)ψµv ∗ f (·)

)̂
(ζ) v−2dv

=

∫ ∞
0

∣∣ψ̂λ (yζ)
∣∣2y−1dy

∫ ∞
0
v

1
2 ψ̂λ (vζ)

∫
R
b̂ (ζ−η) e−η

v(η−ζ)
v−

3
2̂ψ (vη)f̂ (vη) dηdv

=

∫
R
b̂ (ζ − η) f̂ (η)A (ζ, η) dη,

where

(3.3) A (ζ, η) =

∫ ∞
0

ψ̂λ (vζ) ψ̂µ (vη)e−v(η−ζ)v−1dv.

Such an operator tλ,µb is called “paracommutator” [4], [9].

Now let us choose a class {ψk : k ∈ Z+} in AAW as

(3.4) ψ̂k (ζ) =
(4(k+2m+1)!

k!

)− 1
2
(
4 |ζ|

)m+ 1
2 |ζ|

1
2 e−2|ζ|L

(2m+1)
k

(
4 |ζ|

)
,
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where {L(2m+1)
k }k∈Z are the Laguerre polynomials [10]

L
(2m+1)
k (x) =

k∑
s=0

(
k+2m+1
k−s

) (−x)s

s! ,

which satisfy the orthonormal conditions:

(3.5)

∫ ∞
0

e−xx2m+1L(2m+1)
n L

(2m+1)
k (x) dx = (2m+1+n)!

n! δk,n.

Then it is easy to verify that
{
ω−

1
2 ψ̂k (ω)|ω≥0

}
k∈Z+

(
{
|ω|−

1
2 ψ̂k (ω)|ω≤0

}
k∈Z+

)

respectively is an orthonormal basis of L2[0,∞)
(
L2(−∞, 0]

)
respectively.

Therefore we can construct the Toeplitz type operators as (3.1) and obtain
the following main result.

Theorem 3.1. Let T k,lb defined as above, k, l ∈ Z+, then

(1) For k = 1, we have

T k,lb is bounded, if and only if b̄ ∈ L∞;

T k,lb is compact, if and only if b = 0.
(2) For k 6= 1, we have

T k,lb ∈ Sp, 1 < p ≤ ∞, if and only if b̄ ∈ Bp (U) .

Proof. Note that T l
(
τk
)

is an isometry between Aψ̂
l
(Aψ

k
) and L2 (R) , we

know that T k,lb satisfies one of the above statements, if and only if tk,lb =

τkT k,lb T l satisfies the same statement. From (3.2), we see that tk,lb is a para-

commutator [4], [9] with Ak,l (ζ, η) defined by (3.3).
We can now compute Ak,l (ζ, η) as follows:

Ak,l (ζ, η) =

=

∫ ∞
0

ψ̂k
(
vζ
)
ψ̂l
(
vη
)
e−v(η−ζ)v−1dv

= Ck,mCl,m

∫ ∞
0

(4v |ζ|)m+ 1
2 (v |ζ|)

1
2 e−2|vζ|L

(2m+1)
k

(
4v |ζ|

)
·

·
(
4v |η|

)m+ 1
2
(
v |η|

) 1
2 e−2v|η|L

(2m+1)
1

(
4v |η|

)
e−v(η−ζ)v−1dv

= Ck,mCl,m42m+1
(|ζη|)m+1 ·

·
∫ ∞

0
v2m+2e−v(2|ζ|+2|η|+η−η)L

(2m+1)
k

(
4v |ζ|

)
L

(2m+1)
k

(
4v |η|

)
v−1dv

= Ck,mC1,m42m+1 (|ζη|)m+1
k∑
s=0

l∑
t=0

((k+2m+1)
k−s

)(
(l+2m+1)

1−t
)

1
s!t! ·

· (−1)s+t
∫ ∞

0

(
4v |ζ|

)s(
4v |η|

)t
v2m+1e−v(2|ζ|−ζ+2|η|+η)dv
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= Ck,1Cl,m42m+1 (|ζη|)m+1
k∑
s=0

l∑
t=0

(−4)s+t
(
k+2m+1
k−s

)(
l+2m+1

1−t
)

1
s!t! ·

· |ζ|s |η|t
(
2 |ζ| − ζ + 2 |η|+ η

)−s−t−2m−2
(s+ t+ 2m+ 1)!

= Ck,mCl,m42m+1 (|ζη|)m+1 (2 |ζ| − ζ + 2 |η|+ η)−2m−2 ·

·
k∑
s=0

l∑
t=0

(−4)s+t
(
k+2m+1
k−s

)(
l+2m+1

1−t
)(s+t+2m+1)!

s!t!

( |ζ|
2|ζ|−ζ+2|η|+η

)
s
( |η|
2|ζ|−ζ+2|η|+η

)t
.

(3.6)

In the domain {(ζ, η) : ζ, η > 0}, we have

(3.7) Ak,l (ζ, η) = Ck,mCl,m42m+1hk,l1

( ζ
η

)
,

where for u > 0,

hk,l1 (u) = um+1 (u+ 3)−2m−2 ·(3.8)

·
k∑
s=0

l∑
t=0

(−4)s+t
(
k+2m+1
k−s

)(
l+2m+1

1−t
) (s+t+2m+1)!

s!t!

(
u
u+3

)s( 1
u+3

)t
= (u+ 3)−2m−k−1 qk,l1 (u) ,

here qk,l1 (u) is a polynomial with degree ≤ m + 1 + k + 1 < 2m + 2 + k + 1.

Hence hk,l1 ∈ C∞[0,∞), and we have∥∥(hk,l1 )′
∥∥
L∞[0,∞)

≤ Ck,l,m,∥∥(hk,l1 )′′
∥∥
L∞[0,∞)

≤ Ck,l,m,

with a constant Ck,l,m depending only on k, l, and m.
On the other hand, we know from (3.8)

lim
u→∞

k∑
s=0

l∑
t=0

(−4)s+t
(
k+2m+1
k−s

)(
(l+2m+1)

1−t
) (s+t+2m+1)!

s!t!

(
u
u+3

)s( 1
u+3

)t
=

=
k∑
s=0

(−4)s
(
k+2m+1
k−s

)(
l+2m+1

1

) (s+2m+1)!
s!

=
(
l+2m+1

1

) (k+2m+1)!
k! (−3)k 6= 0.

Thus hk,l1 is a nonzero rational function on [0,∞) and Ak,l1 (ζ, η) 6= 0. Then we

know that the assumption A4 in [4] is satisfied for Ak,l1 . From (3.6), we also
know that A0 in [4] is satisfied.
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The expressions of Ak,l1 in the other three domains can be given in the same
way. From these formulas, it is easy to check that A1 and A2 in [4] are satisfied

for Ak,l1 (ζ, η) .
As an example, we shall show A1 in the domain {(ζ, η) : ζ, η > 0}. In this

case, for ∆i = {ζ : ζ ∈
[
2i, 2i+1

]
}, ∆̃i = {ζ : ζ ∈

[
2i−1, 2i+2

]
}, we have from

Lemma 3.9 in [4] that

‖Ak,l‖M(∆i×∆j) ≤

≤ C sup
|α|+|β|≤2

sup
ζ∈∆̃i,η∈∆̃j

{
|ζ||α| |η||β|Dα

ζD
β
ηA

k,l (ζ, η) |
}

≤ C |Ck,mCl,m| 42m+1 sup
|α+β|≤2

sup
ζ∈∆̃i,η∈∆̃j

{
|ζ||α| |η||β|Dα

ζD
β
ηh

k,l
1 (ζ/η)

}
.

The next computation is now clear:
For (α, β) = (α, 0) , we have

sup
ζ∈∆̃i,η∈∆̃j

{
ζ |α|η−α

∣∣(hk,l1 )(α) (ζ/η)
∣∣} ≤ sup

u∈(0,∞)

{∣∣uα(hk,l1 )(α) (u)
∣∣}

= sup
u∈(0,∞)

{∣∣ (u+ 3)−2m−2−k−1−α qk,l2,α (u)
∣∣} ≤ C ′k,l,m <∞,

where C ′k,l,m is a constant depending only on k, l and m. Here we have used

the fact that qk,12,α (u) is a polynomial with degree ≤ α + m + 1 + k + 1 <
2m+ 2 + k + 1 + α.

For (α, β) = (1, 1) , we have

sup
ζ∈∆̃j ,η∈∆̃j

{
|ζ| |η|

∣∣D1
ζD

1
ηh

k,l
1 (ζ/η)

∣∣}≤ sup
u∈(0,∞)

{(∣∣u(hk,l1 )′ (u)
∣∣+∣∣u2(hk,l1 )′′ (u)

∣∣)}
≤ C ′′k,l,m <∞.

For (α, β) = (0, β) , we also have

sup
ζ∈∆̃i,η∈∆̃j

{
|η||β| |Dβ

ηh
k,l
1 (ζ/η) |

}
≤ sup

y∈(0,∞)

{(∣∣u(hk,l1 )′ (u)
∣∣+
∣∣u2(hk,l1 )′′(u)

∣∣)}
≤ C ′′k,l,m <∞.

Thus we have proved that A1 in [4] is satisfied for Ak,l (ζ, η) .
In the same way, from Lemma 3.8 in [4], we can prove that for k 6= 1 A3

(1) in [4] is satisfied as follows:
For ζ0 > 0, 0 < r < ζ0/8, we have

‖Ak,l‖M(B(ζ0,r)×B(ζ0,r))≤C|Ck,mCl,m| 4
2m+1 sup

|α|≤2
r|α| sup

ζ,η∈B(ζ0,2r)

{∣∣Dαhk,l1

( ζ
η

)∣∣}.
Now from (3.3), we have for ζ = η > 0, k 6= 1

Ak,l (ζ, ζ) =

∫ ∞
0

ψ̂k (vζ) ψ̂l (vζ) v−1dv =

∫ ∞
0

v−
1
2 ψ̂k (v) v−

1
2 ψ̂ (v) dv = 0,
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which implies hk,l1 (1) = 0 for k 6= 1.

Hence from hk,l1 ∈ C∞ (0,∞) , for ζ, η ∈ B (ζ0, 2r)

|hk,l1

( ζ
η

)
|=
∣∣hk,l1

( ζ
η

)
−hk,l1

(η
η

)∣∣≤ ∣∣ ζ−ηη ∣∣·∥∥(hk,l1 )′
∥∥
L∞[ 1

2
,2]
≤ 8
∥∥(hk,l1 )′

∥∥
L∞[ 1

2
,2]
· rζ0 .

For |α| ≥ 1, we have

sup
ζ,η∈B(ζ0,2r)

{
r|α|
∣∣Dαhk,l1

( ζ
η

)∣∣} ≤ 40r0

∑
0≤i,j≤2

∥∥ui(hk,l1 (u)
)(j)∥∥

L∞[ 1
2
,2]
· ζ0.

Thus we have proved A3 (1) for ζ0 > 0. For ζ0 < 0, the proof is almost the
same, and we shall omit it.

Our proof for (2) is now complete by the result in [4].
To prove (1), we need to check A8 in [4]. From (3.3), we have for ζ = η >

0, k = 1

Ak,1 (ζ, η)

∫ ∞
0

ψ̂k (vζ) ψ̂k (vζ)v−1dv =

∫ ∞
0
|ψ̂k (ω) |2ω−1dω = 1.

On the other hand, note that Ak,l ∈ C∞
(
[1
2 , 2]× [1

2 , 2]
)
, we have A8 by [4].

Thus our proof of (1) is also complete since A1, A2, A8 are satisfied. �

Hankel type operators can also be discussed as in [5], [6], and we have similar
results.
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