SOME REMARKS CONCERNING THE MORSE-SMALE CHARACTERISTIC OF A COMPACT MANIFOLD

DORIN ANDRICA

(Cluj-Napoca)

1. Introduction. Let M^m be a compact m-dimensional smooth manifold without boundary $(\partial M = \emptyset)$ and let $\mathcal{F}(M)$ be the real algebra of all smooth mappings $f: M \to \mathbb{R}$. For $f \in \mathcal{F}(M)$ let us define the *critical* set of f by $C[f] = \{ p \in M : (\mathrm{d}f)_p = 0 \}$ and the *bifurcation set* by B[f] = 0= f(C[f]). The elements $p \in C[f]$ are the critical points of f and the elements of the set B[f] represent the critical values of the mapping f. Recall that a critical point $p \in C$ [f] is non-degenerate if the bilinear form $(\mathrm{d}^2 f)_p: T_p(M) \times T_p(M) \to \mathbb{R}$ is non-degenerate, i. e. there exists a chart (U, φ) in p such that the Hessian matrix $H(f_{\varphi})(\varphi(p)) =$ $=(\partial^2 f_{\varphi}/\partial x^i\partial x^j(\varphi(p))_{1\leqslant i,j\leqslant m}$ is invertible, where $f_{\varphi}=f_{\varphi}\varphi^{-1}$. Notice that this notion does not depends on the chart (U,φ) . Taking into account the well-known Morse lemma (see [4], [6, p. 199]), it results that for a non--degenerate critical point $p \in C[f]$ there exists a chart (U, φ) with $f_{\varphi}(x) =$ $=f(p)-\|P^{-}(x)\|^{2}+\|P^{+}(x)\|^{2}$ for any point $p \in \varphi$ $(U) \subseteq \mathbb{R}^{n}$, where P^{-} and P^{+} are projections on some subspaces of \mathbb{R}^{n} . From this result one obtains the following decomposition of the tangent space $T_p(M)$, $T_p(M) = T_p^-(M) \oplus T_p^+(M)$, where $T_p^-(M)$, is the maximal subspaces on which the quadratic form $(d^2f)_p(X_p, X_p)$ is negatively defined. The number $k(p) = \dim_{\mathbb{R}} T_p^-(M) = \dim_{\mathbb{R}} \operatorname{Im} P^-$ is called the Morse index of $p \in C$ [f]. It is clear that $0 \le k(p) \le m$ and from the proof of the Morse lemma it results that k(p) represents the number of the negative eingevalues of the Hessian matrix H (f_{φ}) $(\varphi(p))$. It is not difficult to show that the non-degenerate critical points of f are isolated in the critical set C[f]. department Morse formalisment II and sailly if

1.1. Definition. If the set C[f] contains only non-degenerate critical points, the mapping $f \in \mathcal{F}(M)$ is called a Morse function on M.

Let us denote by $\mathscr{F}_m(M) \subset \mathscr{F}(M)$ the set of all Morse functions defined on the manifold M. The following result is a basic tool in Differential Topology.

1.2. Theorem. For any finite-dimensional compact manifold M the relation $\mathscr{F}_m(M) \neq \emptyset$ holds, i. e. there exists a Morse function defined on M. For details concerning this result we refer to the excelent book [4].

If $f \in \mathscr{F}_m(M)$, the critical set C[f] is finite because it contains only isolated critical points and the manifold M is compact. Denote by $\mu_k(f)$ the number of the critical points of f with the Morse index k, $0 \le k \le m$.

Consider $H_k(M; F)$, k = 0, m, the singular homology groups with the coefficients in the field F and $\beta_k(M; F) = \operatorname{rank} H_k(M; F) =$ $\dim_F H_k(M; F)$, k = 0, m, the Betti numbers of the manifold M.

1.3. Theorem. If $f \in \mathscr{F}_m(M)$ the following relations hold

$$\mu_k(f) \geqslant \beta_k(M; F), \ k = \overline{0, m} \ (weak \ Morse \ inequalities)$$

$$\sum_{k=0}^{m} (-1)^k \mu_k(f) = \chi(M) \text{ (Euler formula)}$$

For proof and applications of these very important relations we refer to the book of Palais, R. S., Terng, Chun-lian [6, p 213-222] or Andrica, D. [1, p 71-80].

1.4. Definition. A Morse function $f \in \mathcal{F}_m(M)$ is called F-perfect

if $\mu_k(f) = \beta_k(M; F), k = 0, m$. The existence of an F — perfect Morse function on the manifold M is an important problem with many topological and geometrical consequences.

2. The Morse-Smale characteristic and the numbers $\gamma_i(M)$

If $f \in \mathcal{F}_m(M)$, let $\mu(f)$ be the integer number defined by

$$\mu(f) = \sum_{k=0}^{m} \mu_k(f) \tag{1}$$

It is obvious to see that μ (f) represents the total number of critical points of f, i. e. the cardinal number of the set C[f].

2.1. Definition. The number

$$\gamma(M) = \min \{ \mu(f) : f \in \mathscr{F}_m(M) \}$$
 (2)

is called the Morse-Smale characteristic of M. In the paper [2] it is proved that the Morse-Smale characteristic is a differential invariant of M, i. e. if the compact manifolds M, N are diffeomorphic, then $\gamma(M) = \gamma(N)$.

It is known [2, Theorem 3. 1.] that the compact manifold M has F-perfect Morse functions if and only if

$$\gamma(M) = \beta(M; F) \text{ and it is an initial } A. \tag{3}$$

 $\gamma(M) = \beta(M; F)$ where $\beta(M; F) = \sum_{k=0}^{m} \beta_k(M; F)$. In an analogous way with (2) let us define the numbers $\gamma_i(M)$, i =

$$= \frac{\ln \text{ an analogous way with } (2) \text{ for def}}{0, m, \text{ by}} \qquad \qquad \gamma_i(M) = \min \{\mu_i(f) : f \in \mathscr{F}_m(M)\}$$

$$(4)$$

It is easy to see that the following simple inequality is true

$$\gamma(M) \geq \sum_{i=0}^{m} \gamma_{i}(M) \tag{5}$$

2.2. Theorem 1) The number y (M) is a differential invariant of the manifold M, i = 0, m.

Morse-Smale characteristic

2) $\gamma_i(M) = \gamma_{m-i}(M), i = 0, m.$

Proof. 1) Let us consider the function $\emptyset : \mathcal{F}(M) \to \mathcal{F}(N)$ defined by $\mathcal{O}(f) = f \circ \varphi$, where $\varphi : N \to M$ is a diffeomorphism between the manifolds N, M. Using the result of [2, Lemma 2, 3,] it follows that $\emptyset \mid \mathscr{F}_m(M) : \mathscr{F}_m(M) \to \mathscr{F}_m(N)$ and $\mu_i(f) = \mu_i(f \circ \varphi)$, $i = \overline{0, m}$, for any Morse function $f \in \mathscr{F}_m(M)$. It is easy to verify that $\emptyset \mid \mathscr{F}_m(M)$ is one to one and $(\emptyset) | \mathscr{F}_m(M))^{-1} = \psi | \mathscr{F}_m(M), \text{ where } \psi : \mathscr{F}(N) \to \mathscr{F}(M) \text{ is given by } \psi(g) = \emptyset$ $= g \circ \varphi^{-1}$, i. e. the function $O \mid \mathscr{F}_m(M)$ is a natural hijection between $\mathcal{F}_m(M)$ and $\mathcal{F}_m(N)$.

Using these properties and the results contained in [2, Lemma 2, 2 and Lemma 2.3.] one obtains $\gamma_i(M) = \min \{ \gamma_i(f) : f \in \mathcal{F}_m(M) \} =$ $= \min \left\{ \mu_i(f \circ \varphi) : f \in \mathscr{F}_m(M) \right\} = \min \left\{ \mu_i(\mathcal{O}(f)) : f \in \mathscr{F}_m(M) \right\} = \min \left\{ \mu_i(g) : f \in \mathscr$ $g \in \mathscr{F}_m(N) = \gamma_i(N)$

- 2) For a Morse function $f \in \mathcal{F}_m(M)$ the mapping h = -f satisfies the relations $h \in \mathcal{F}_m(M)$ and $\mu_i(f) = \mu_{m-i}(h)$, i = 0, m. Therefore, for any Morse function $f \in \mathscr{F}_m(M)$, $\mu_i(f) \geqslant \gamma_{m-i}(M)$ and consequently $\gamma_i(M) \geqslant \gamma_{m-i}(M)$ $\geqslant \gamma_{m-i}(M), i=0, m$. Replacing i with m-i, from the above inequalities it results $\gamma_{m-i}(M) \geqslant \gamma_i(M)$, i. e. the desired relations hold.
- 3. The numbers γ , γ_i on the product manifolds. Let M^m , N^n be two compact manifolds without boundary $(\partial M = \partial N = \emptyset)$.
 - 3.1. Proposition. The following relations hold:

1)
$$\gamma$$
 $(M \times N) \leq \gamma(M)$ $\gamma(N)$
2) $\gamma_i(M \times N) \leq \sum_{j+k=i} \gamma_j(M)$ $\gamma_k(N)$, $i = 0, m+n$

Proof. 1) Consider $f \in \mathcal{F}_m(M)$, $g \in \mathcal{F}_m(N)$ and $h: M \times N \to \mathbb{R}$ given by h(x, y) = f(x) + g(y). It is easy to see that $C[h] = C[f] \times C[g]$, thus $\mu(h) = \mu(f)\mu(g)$. On the other hand, after an elementary calculus. it results that the Hessian matrix of h in (p,q) is

$$H(h)(p, q) = \left(egin{array}{c|c} H(f)(p) & 0 \ \hline 0 & H(g)(q) \end{array}
ight)$$

i. e. h is a Morse function on $M \times N$. Taking into account Definition 2.1 and the relation $\mu(h) = \mu(f) \mu(g)$, one obtains $\gamma(M \times N) \leq \mu(f) \mu(g)$ for any Morse functions $f \in \mathscr{F}_m(M)$ and $g \in \mathscr{F}_m(N)$. That is $\gamma(M \times N) \leqslant \gamma(M)\gamma(N)$.

2) With the above notation let us remark that $\mu_i(h) = \sum_{j+k=i} \mu_i(f) \mu_k(g)$, tor any Morse functions $f \in \mathcal{F}_m(M)$, $g \in \mathcal{F}_m(N)$. According to the definifion of the number γ_i (see relation (4)), the desired relations follow.

It is a natural and important problem to get the manifolds M, Nwhich satisfy the equalities in Proposition 3.1 (see Kuiper, N. H. [5] and Rassias, G. M. [9]). A sufficient condition is given in the following result.

3.2. Theorem. If M^m , N^n are compact manifolds without boundary $(\partial M = \partial N = \emptyset)$ which have F-perfect Morse functions, then $\gamma(M \times N) = \gamma(M)\gamma(N)$ and $\gamma_i(M \times N) = \sum_{j+k=i} \gamma_j(M)\gamma_k(N)$, i = 0, m+n.

D Andrica

Proof. Taking into account relation (3) it results $\gamma(M) = \beta(M; F)$ and $\gamma(N) = \beta(N; F)$. Consider $P(t; M, F) = \sum_{p=0}^{m} \beta_p(M; F) t^p$, $P(t; N, F) = \sum_{q=0}^{n} \beta_q(N; F) t^q$, the Poincaré polynomials of the manifolds M, N. It results $P(t; M, F) P(t; N, F) = \sum_{k=0}^{m+n} (\sum_{p+q=k} \beta_p(M; F) \beta_q(N; F)) t^k$. Because the homology coefficients group is the field F, from the well-known Kunneth formula, one obtains

 $H_k(M \times N; F) \simeq \bigoplus_{p+q=k} (H_p(M; F) \otimes H_q(N; F)), \ k = \overline{0, m+n},$ (6) (see for example [3, p 108]). Taking into account (6) the following relations $\beta_k(M \times N; F) = \sum_{p+q=k} \beta_p(M; F)\beta_q(N; F), \ k = \overline{0, m+n}, \ \text{hold} \ \text{i. e. } P(t; M, F)P(t; N, F) = P(t; M \times N, F).$ On the other hand it is not difficult to show that the manifold $M \times N$ has F-perfect Morse functions (for example, if $f \in \mathcal{F}_m(M), g \in \mathcal{F}_m(N)$ are F-perfect, then $h \in \mathcal{F}_m(M \times N), h(x, y) = f(x) + g(y)$ is F-perfect too; see the proof of Proposition 3.1). Using the equality $P(1; M \times N, F) = P(1; M, F) P(1; N, F)$ and applying relation (3) for M, N and $M \times N$ it follows $\beta(M \times N; F) = \beta(M; F)\beta(N; F)$, i. e. $\gamma(M \times N) = \gamma(M)\gamma(N)$.

The second equality follows in an analogous way.

3.3. Corollary. Let M^m , N^n be compact manifolds without boundary $(\partial M = \partial N = \emptyset)$, m, $n \ge 6$. If the singular homology groups $H_k(M; \mathbb{Z})$, $H_j(N; \mathbb{Z})$ are torsion-free, then $\gamma(M \times N) = \gamma(M)\gamma(N)$ and $\gamma_i(M \times N) = \sum_{i+k=i} \gamma_i(M)\gamma_k(N)$, i = 0, m + n.

Proof. From [2, Corollary 3, 4.] one obtains that M, N have Q-perfect Morse functions. Using Theorem 3.2, the desired result follows.

3.4. Remarks 1) Taking into account the equality $\gamma(S^m) = 2$ (see [2, Example 3. 6]), it follows $\gamma(S^{m_1} \times \ldots \times S^m) = 2^k$. For example, if $T^k = S^1 \times \ldots \times S^1$ is the k-dimensional torus, then $\gamma(T^k) = 2^k$. Using, the second equality contained in Theorem 3.2, one obtains $\gamma_i(T^k) = C_{k_1}^i$, i = 0, m.

2) Under the hypotheses of Theorem 3.2, inequality (5) becomes an equality, i. e. a partial answer for another problem of Rassias, G.M. [7], [8] (see also Andrica, D. [2]) is obtained.

REFERENCES MORALE AND TO A STATE OF THE PERENCES OF THE PERENCES

- 1. Andrica, D. Critical Point Theory and Some Applications, Univ. Timisoara (to appear), 112 p.
- 2. Andrica, D., The Morse-Smale characteristic of a compact manifold, "Babes-Bolyai" University, Faculty of Mathematics, Research Seminars, Seminar on Geometry, 1991 (to appear), 14 p.

- 3. Fomenko, A. T., col., Homotopic topology, Akadémiai Kiadó, Budapest, 1988.
- 4. Guillemin, V., Pollak, A., Differential Topology, Prentice-Hall, 1974.
 5. Kuiper N. H., Minimal Total Absolute Curvature for Immersions, Inventiones math.
- 10 (1970), 209-238.
- 6, Palais, R.S., Terng, Chun-lian, Critical Point Theory and Submanifold Geometry, Springer-Verlag, 1988.
- 7, Rassias, G.M., Morse functions on differentiable manifolds, Prakt. Akad. Athènon 53 (1978), 197-201.
- 8. Rassias, G. M., On the non-degenerate critical points of differentiable functions, Tamkang I. of Math. 10 (1979), 67-73.
- 9. Rassias, G.M., On the Morse-Smale characteristic of a differentiable manifold, Bull. Austral. Math. Soc. 20 (1979), No. 2, 281-283.

"Alim Place-Brown Electron religible at a goal "custs from

Meceived, 15. VII. 1991

"Babeş-Bolyai'' University Faculty of Mathematics Str. Kogălniceanu, 1, R—3400 Cluj-Napoca Romania