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A SUFFICIENT UNIVALENCE CRITERION
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Let f(z) be a function holomorphic in |z] < 1.
‘One gupposes without any loss of generality that f(0) = 0 and f/(0) = 1.
Let now consider the Taylor development of f(z), development
which is absolutely and uniformly convergent on any cormpact subsets
contained in |z| <1, ie.
- oo ”')(O)
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- =Y a8, with o = £/(0) = 1.
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Obviously the sequence of partial sums of this Taylor series {o,2"},ew
is & sequence of polynomials which, under the hypothesis of their univa-
lence and taking also into account the locally uniformly convergence of
the sequence, leads to the univalence in |#] < 1 of the sum funection f(z).
On the other hand J. Diendonné gave in 1931 [1] a necessary and
sufficient univalence criterion in |2| <1 for polynomials. Precisely accord-
"
ing to this criterion a polynomial Y «2" is univalent iff their coeffici-
: v=0
ent satisfies the condition :
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this result if the above-mentioned condition is fulltiled for (V) e N, the

F2(0)

coetficients being now /-

» we would have a sufficient univalence con-

dition in |#| <1 for the given function f(z).
At the same time we also remark that the condition
i _f“’(O) sin v 6 _
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should be implied by the fact that all the roots # of this polynomial belong
to the outside of the unit disk |2| = 1, that means that | %] >r 21, r
being the lower limit of the distances of these roofs to the origin. But
it i3 known [2] that this » satisfies the following algebrical equation with
real coefficients :

P(r) =(|aalr* & |Gy |22 -L .. + )" —|ar] =0, where a, =
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equation about what one can state that it has a unique positive real solu-
tion. Moreover this unique solution fullfils the condition »=+4 iff |a,|
$lang) -+ .00 Flap < lm|=1 (V)nel.
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This result also assures the convergence of the series ¥ |ay| =

¥=2
_ & fM(0)sin 0
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We also led to the following theorem.

, Temark important in the sequel.

Theorem. A sufficient univalence condition for the function f(2)
(i.e. f(z)el) is that for (VmeN and (V)0e [0, -g- the dneguality
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| L9 R‘H_] i” <1 holds i.e. the series sum 170

b v! sin 6 v=2| v!
does not overpass the unily.
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