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A BILATERAL APPROXIMATING METHOD
FOR FINDING THE REAL ROOTS OF REAL. EQUATIONS
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0. In approximating the solutions of real equations, improved
results- can be obtained if we combine Newton’s method [1] with the
method of chords [2] in the following way :

Let @, be an initial approximation of the solution a* of equation
J(x) = 0, where f is a real-valued function defined on an interval I < R.
We compute the first approximation g, using Newton’s method, i.e. g, =
= oy — f(@y)[f"(wy). We further compute x; by the method of chords
using the approximation z, and wy,: @ = y; — f(9,)/[@g ¥15f]. Assu-
ming that the approximation w,_, of z* has been computed, the next
approximation, z,, is obtained in the following way : '

(0.1) Yo = Bot — J(Euo)lf (@)
Ty = Ya _f(?/ﬂ)/[xn—i: Yn ;f]7 n = 17 27 O

The geomelric interpretation of the method based on (0.1) is shown
in the figure below. The advantage of this method is that a solution is
approximated from two directions. One of the sequences (,) and (y,)
approximates a* from left while the other one .
approximates it from right. This property of

the sequences makes possible to give bouds ’%
of the absolute error of the approximation l /
of z*. Obviously we have i
IXn_q Xn .
|2 — @l <|@a—ya| and |2¥—y, | <| =g T Sy
The method also has disadvantages Fig. 1 i

from which we only mention one. For build- v i
Ing the two sequences which define the method two recurrence formulas
are needed. Tn the present paper we give a version of ‘Steffensen’s
method which involves two sequences with the above-mentioned positive
Properties and which only uses one recurrence of the type given in (0.1).

In the following we recall definition and the needed properties of
the divided differences [2). Let f:I— R be a mapping with 7<= R. We
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call first order divided difference of f on the mnodes a’, 2" in I the

number
J(&') — f(&")

{I/" _ ml/

denoted by [z, ' ;f]. Obviously [, & ;f] = [«", ’";f], that is the
first order divided difference is symmetrical with regard to the nodes '
and #''. The second order divided difference of the mapping f on the
nodes &', x'’, 2’’’ in I, denoted by [«', '/, """ ; f], is the first order divided
difference of the mapping A = [&',.;f]: I\ {2’} = B, I(z) =[=, 2" ; f)]
on the nodes z’/, «’’’, that is

[2, 2" ;71— [a), 2" f]

[‘/L"j w”’ m’” ;f] . i
— &

The second order divided difference is also symmetrical with regard to
nodes. This can be easily checked and we have

[wl, xll’ mIII ;f] 1= [m!7 m!ll’ ./,L‘II ;f] _— [a;'ll’ ml, x!ll ;f] o
— [0, @' if] = [2", o', & i f] = [a™, &, o ; 1.

The third order divided difference of the mapping f on the nodes z',
x'y 2", ¢ in I, denoted by [«', &', &', """ ; f] is the following quotient

[ml, wll, w/u ;f] _[ml, C(/‘”, (.v”” ;f]

e triy

X —

which is also symmetrical with respect to the nodes.
We obviously have

(0.2) (2", 2" fi(a" — 2”) = fla") — J(z") "

©3) [, oo — o) = [0 85 ] — [ 0]
From (0.2) and (0.3) there immediately follows

(04) fa) = fl@") + [a", &5 f)o’ — &) +

+ [wr, wu’ ml’l ;f](ml . wru)(xr . .CL'”).
Indeed we can write

@™y + [ a3 £ — o) + [a'y o &3 f)a’ — &)o' — o) =
= ") + [o", "5 f e’ — &) + [@, 2”5 fl(a’ — o) —
~ [a", 2" flla" — a") = (fla") + f@') — fa") — fla').
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We also note that the mapping f: I - R is increasing (decreasing) if and
only if for any two distinet points a', 2"’ eI we have L2, @";f] =0
(< 0). A mapping f:T — I is convex (coneave) if and only if for any
three points »', a”, @' €I we have [« ", "5 f1 2 0 (<0) [2].

1. STEFFENSEN'S METHOD

Let f be a continuous, real valued mappi i
. uous pping defined on the seement
I from R, Let us consulgr tl}e equation (f)xz) =b0 and let us assumz that
we can write this eguation in the following equivalent form :

(1.1) fl@) =2 —gla) =0

where the fixed points of g are the solutions of the i

g @ he s . equation f(z) = 0
Let (@) be a sequence of points from I and the sequel[}cc (2,) J{)(lli)lt b.
?,L'n = g(x,), = 0,1, 2,... The approximatling wmethod for solving equy
tion (1.1) defined by the sequence (w,) built by the recurrence formuai-

1.2) Ty = n — [y U5 f17 flan), #=0,1,2

y v

wlere @, €I is an initial approximati ‘ i
h g 1al approximation and w, = ¢(x,) eI is cal =
fensen’s method. o ) cutled Stef

Naote Sinp a ig ¢ i YT 1 f 1
Note. Since z, eI is an approximation of a solution and not a solu-

~lon of (1.1), w, = glay) # @, We Inay assume that a,#w, for all » > 1,

smee if for some n, @, = u,, would be true, then according to (1.1) we
would have f(z,,) = 0, that is @n, Would be exact solution of equation
fiz) = 0. Finally, starting from an vyel, if uy = g(z,) el, then x can
h‘e al}{';une-d_.umug (1.2) and if », eI exists then Uy - q(w,) also elxists
Generally, if @, and u, were oblained and they arve in 1 § ltllf-.n Fnyy can

be computed and if a,,, e exist so does Unite

2. THE CONVERGENCE OF STEFFENSEN’S METHOD

TorOREM 2.1. Let f:I — B be a continuous m ; =
= o — f(z). If the conditions L A I wag DT

(i) the mapping g:1 — B 14s strictly decreasing and convey

EH_) t:‘;rzre eansts some xy € I for which f(x,) <0 ; ’

il = [wy — d, & '
| koﬁi’ o = [# —dy @, + d] = I, where d = max(|f(z,)], | f(u,)])
then the sequence (2.) can be constructed using the rece

5 i ur

¥n€ly and the followings are true : ¢ T ermia, G2

(J) the sequence (w,), n > 1 ig decreasing and convergent ;

(J_]_? the sequence (w,),n > 1 48 increasing and cmi'vergem;

(333) im @, = lim u,=o* is the only solution of the equation f(z) = 0

in I,
Proof. From (ii) it results that u,> z.. Ind i
‘ 0 . eed according to (1.1
’Vie have 2, — g(a}o) = %y — %, — flz,) <0, osmce Uy — Ty :g_f(mtf) =)
= [f(wa)| <d, uy e o We have f(u,)> 0. Indeed, flu,) = Uy — g(é‘o) =
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= 9(&,) — g(uy) = [z, Uy ;5 ¢1(w, — %,)> 0 since g i8 decreasing and z, —

— %, <<0. From (i) and the fact that f is continuous it results that equa-

tion (1.1) has a unique solution. The same condition (i) we gives that f

is increasing and concave. From u, e I it results that using the recmirence
formula (1.2) @; can be computed. We have -

(2.1) By = &y — [y, U3 f17 f(w,)
Let us note that @, can also be obtained by
(2.1 Ty = g — [Zg, Uy 3 f17 fl1g)

This can be checked directly. Using (ii) and the fact that f is increasing
from (2.1) it results @ — @, = — [a,, U3 [17 flag)> 0, thus z,> m,.
Analogously, from (2.1') we have » — u, = — [Zoy g 5 F172 fluy) <O
which means @, <<tu,. This means that the following inequalities hold :

(2.2) Te<<w; and x; < U,

From (2.2) we have z, eI, and thus u;, = g(s,) exists. Let us apply for-
mula (0.4) for the nodes &' = #), 2" = x, and 2"’ = %y. We have

(@) = f(@g) + [@o; %o 5 fI(, — @o) + [@oy gy @15 f) (w0, — o) (@1 — @)

whence, since for n = 0 (1.2) gives f(x,) = — [@g, uy; [ W@, — x,), it results
J(@y) = [@y, Wy, @5 U@y — up)(2y — @;). Since f is coneave, using the
inequalities (2.2) we obtain f(a;)> 0 (@,> @*). From 2 — = fla)> 0
it follows that #,> u,, which compared to the second inequality in (2.2)
gives

(2.3) Uy <oy <Uy

u, may be either smaller or greater that w, but in both of the cases |u, —
— @o| < d, thus u, € I,. Indeed, if u,> @, then according to the inequa-
lities (2.3) we have w, — @y <u, — @, <d(u, eI), otherwise, that is
Uy <@y, using the inequalities (2.2) and the fact that f is inereasing, we
have @, —uy <@ — wy — f(#) < f(uy) = [f(up)| < d. Thus flu,) exists
and we have

Jlug) =y — guy) = g(@,) — glwy) = [@g, 1y 5 g)(am; — uy),

whence, since ¢ is decreasing and ;> u, it results that f(u,) <0 (v, <a®).
The points , %, @, %, and z* are disposed as shown in the figure below

Uy U, Xo X, Xy Ug
f A ' 3 ’ ! 3
¢ + + } 7 (| T 5]
) % x,+d
X~ 0 X 0
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F¥rom z, u, eI, it follows that % can be computed using the recurrence
formula (1.2) and we have

(2.4) Ty = @y — [#y, 4y 5 £17 flay)
‘Let us note again that », can also be obtained using the formulg,
(2.4 4 Tp = Uy — [@g, Uy ;5 f171 fluy)

fact that can easily be checked. From the formulas (2.4) and (2.47)
“using that f is increasing and flz))> 0 ana Sluy) <0, we obtain Ty — @ =
= — [@, %5 f17 flay) <0 thus Ty Tyt Ty — Uy = — [y, Uy 3 f171 fluy) <1 0
thus @,> w,. Thus we have the inequalities , B ’

(2.3) wy <y <

“which, since @y, %y €I, give @, €l, and the existence of Uy = g(@).
. Writing formula (0.4) for the points ' = m,, 2" — @y, """ = a4, and
using inequality (2.4) we obtain "

Sl@y) = L2y, w, @, 3 1w, — Wy (X — @)

whenee, since f is concave, based on the inequalities (2.5) i s f(
| L ased qualities (2.5) it results f(z.)> 0
(2> ;(u;). _Wel also have x, — u, = flas) > 0, that is 2,> U i
_ IVIOUSLY Uy — uy = g(@,) — g(a,) = [y, @55 9] (2, — 2,) > 0 since
g 18 decreasing and o, <a.. Thus 1, Which using (& rives u, € I
ol s g » <@y Thus 4, v, which using (2.5) gives u, € I,

Jug) = uy — 9(us) = g(,) — 9y) = [@gy 1y; 9wy — u,) <0,
thus flu,) < 0 (4, <a*).

By mathematical induction we shall prove that the elements of
:;helsequeuct? (@) computed using the recurrence formula (1.2) are in
Ly, that (@,) is decrea_mng (@nyy <a,), that the sequence (u,), is increasing
(% <<Uyyy) and that for u > 1 flu,) <0 and f(z,) > 0.

As we have already seen, the statement is true for » = 1. TLet us
assume that it is {rue for some positive integer k(k> 1), that is a,

U e l, Pieyy < &y Upyqg ™ Uy, f(u_k) <0 and f(z;) > 0. We shall Prove that

the statement is also true for &k - 1.

Based on the conditions and ihe recurrence formula (1.2) we com-
pute gz, 1

(2.6) Tppr = & — [@p, ug; f12 S(aw)
or alternatively
(2.6") iy = Uy — [ By Uy f]72 Suy)

Using these and the fact that f is increasing and fl@r)> 0, flu,) <0 we

obtain @y — @y = [a, u, 517 flaw) <0, thus a,,, <@y, and @, — u; =
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= [@n 5 [ f(ur) <0, thus 4,,> w,. Thus we have the following REFERENCES

Inequalities : : Ak i

(2.7) uk<wk+1< oy 1. Balazs, M., On_:\irzn'{on".v Method for Solving Real Equalions. Lucririle Seminarului ““Didactica

) “Matematicii”, Vol 5, pp. 5—26 (1989) (Romanian)
whenee a;,, € I,. Further Wiy = G(Bpyq) exists. ) 2. Ba]z'l'fs,_ M., On the Melhod of Chords for Solving Real Equations. Lucririle Seminarului
Writing formula (0.4) for ' = Brpry "' =ap, 8" =y and using “‘Didactica Matematicii” Vol. 6 (1990) (Romanian) :
(2.6) we obtain H@is1) = [, g,y Grpr 5 f U Bpn — ) (Wryy — 20 whence, 3. Paviiloiu, 1., Solving Equations by Interpolalion. Editura DACIA (1981) (Romanian)
since f is concave. Based on the imequalities (2.7) it follows flep)> 0 .
Y . . Received 15.X.1992 “« _ i35 . .
(221> 2%). We also have a, — iy, = fl2y,)>0 thus Bhsr > Wiy g?é’;ﬁltg”?;haggz%”y
-4 - Sy | : cs

Obviously w,, — Uy = (@) — 9(2) = [@hy Xepys 91(#pyy — @) > 0, thus 3406 Cluj-Napoca

Upy1=> wy. - Krom this, using (2.7) it results that Uiyy €Ly, We can write | Romaniq

. . |

SJ(nyy) = Uryy — §(Upyq) = g($k+1) — g(Ugyy) = [”kﬁa uk‘+1§ 9@y — }

— Upy1) <O (Upyy <az¥).

Obviously, for all n > 1 we have u, <a,, thus u, <u, WL Byl |
Since the sequences (z,) and (#,) are monotonous and bounded (0 Uy e1y)
they are convergent. Let lim 2, — & and lim Uy=1l. Obviously &, @ e I,
@ < Z f(#) <0 and f(&) >0 thus @< a*< 7. We claim that # = @,
that is % = &=a*, which means that the sequences (x,) and (u,) have
limit #*, then single solution of equation (1.2).

Let us assume thet contrary to this, that is Z >% (% = @). In this
case taking the limits in the recurrence formuls (1.2), written in the form
Lf (o) — fltn) sy — @y) = (2n — wa)f(@) We obtain 0 — [f(@) — fa)].
0 = (Z — @)f(#) which means either f@) =0 or & = g*. Analogously
taking the limits for # — oo in the obvious equality : [ f(@) — fluwa)(@nyy —
— Un) = (& — Un)f () We get. [f(2*) — f(@))(a* — @) — (a* — @)f(#@) or,
equivalently 2f(#)(«* — %) = 0 which means either &) = 0, that is
% = g* or g* — @ = 0, that is 2* — 7. We may conclude that @ — 7
which conftradicts the assumption. Thus & — 7 and the proof is complete.

Note. Three more analogous theorem can be formulated depending
on the monotonicity and convexity of g. :

For illustrating the above presented theory let us consider the equa-
tion #* + @ +1 = 0 written as » — (—@®* — 1) = 0. We have g(z) =
= — (#® +1). The mapping ¢ is decreasing on R and is convex for
z <0. Since f(—1) = —1 <0 we may take x, = —1. It follows that
Uy = g(%y) = 0 and f(uy) = 1. Thus we have d — 1 and I, = [—2,0]. We
may apply Theorem 2.1, for I — Iy =[—2,0]. We obtain », — 1/2,

% = —9/8 and so on.
NUMERICAL EXAMPLE

N T g(z) (=)

0 0.000000000000000000 —1.000000000000000000  1.060000000000000000

1 —0.500000000000000000 —0.875000000000000000  0,375000000000000000
2 —0.652866242038216560 —0.721725904749725638  0.068859752711509078
3 —0.681340531658280824 —0.683704746143404988  0.002364214485124164
4 —0.682326642944392402 —0.682329425247321469  0.000002782302929067
5 —0.682327803826411712 —0.682327803830264706  0.000000000003852993
6 —0.682327803828019327 —0.682327803828019327 0.000000000000000000
7 —0.682327803828019327 —0.682327803828019327  0.000000000000000000
8  —0.682327803828019327 —0:682327803828019327 0.000000000000000000
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