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1. INTRODUCTION

In [7] a general principle of double condensation of ‘singularities
Was proved both in the space of funetions and their domain of defini-
tion. This principle was applied in [7] and in some subsequent papers
(see [3 — 5, 12, 13, 16—20]) to prove unbounded dense divergence for
families of dense functions in some approximation processes of analysis
such as Fourier series, La.gr-fmge_intcrpu]fbbi_on, numerical differentiafion
and quadrature formulae. The aim of this paper is to emphasize such
& new situation, namely that of Wals-Fourier series,

| 2. WALSH SERIES

The Walsh functions form an orthonormal system which ean per—
form all the usual applications of orthonormal Systems such as data trans-
mission, filtering, image enhacement and pattern Tecognition. Due {o
the fact that Walsh funections take only the values -+-1 and —1, they
are easy to implement on high speed computers with very little storage
Space. For a elear and thorough aceount of the present-day situation in
Walsh analysis, we recommend the treatise [257, which we shall follow
thorough this baper. One can consult also [9].

Let » be the funetion defined on [0, 1) by n(@) =1 for ze 10, 2-1),
") = —1 for g e [27% 1) and extended to I by periodicity of period 1.
The Rademaclier system r = (r,, n € N) is defined by

(1] P (@) = 72" x), zeR, neN,
Where N — 10,1, 2, ...} denotes the set of natural numbers.
- For ne N let
(2) = g 7y - 2F
k=0

be the binary expansion of ., The numbers #, € {0, 1} are called the binary
Coefficients of n, Obvisously that =, — 0 for % sufficiently large (such,
that 2% ~ n). Ak
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The Rademacher system 7 is orthonormal but not complete in
L#[0,1). The Walsh— Paley system W= (wp,m€N) was defined by
R.E.AC Paley [22] in 1932 by

o
(3) w, =[] vi¥, welb.
k=0

Obviously that wsw = r,, n e ¥, and the Walsh —Paley system is closed
under finite products. Bach Walsh function w, is piecewise constant,
takes only the values -1 and have a finitely many jump discontinui-
ties on [0,1).

Beside this system, the authors mention in [25] other two complete
orthonormal systems: the original Walsh system, introduced by J. L.
Walsh [28] in 1923 and the Walsh— Kaczmarz system, defined by A.
A. Schneider [26] in 1948. All these three systems contain the same func-
tions and differ only by their enumeration. In this paper we shall con-
sider only the Walsh—FPaley system and we shall call it simply the Walsh
system.

The Walsh system is & complete orthonormal system in 12 [0, 1) and,
in fact, as have been remarked by N. J. Fine [8] and N. Ja. Vilenkin
[27], Walsh analysis may be considered as a special case of harmonic
analysis on a compaet abelian group, in a way which we shall describe
briefly in the following. '

Denote by Z, the discrete cyclic group of order 2, i.e. the set {0, 1}
with discrete topology and addivion modulo 2. The dyadic group ¢ is
defined by

(4) G =17y, X Zy X ...
with product topology and addition

(5) r+ Yy = (|2 —yal, nel),
for # = (v,) and y = (y,) in G. In fact, @ is a vector space over the field
Zy and the formula

(6) | 2|y = }: e 27 = (z) € G,
k=0

defines a norm generating the topology of G.

The measure y on G, obtained as the product measure from the
measure v on Z, which assigns to each singleton the measure 1/2, is a
positive Haar measure on @, i.e. a translation invariant Borel measure on
G with p(@) =1 (see [10], [21] or [23]).

The function p, defined on G by

(7) pa(®) = (—1)"n,

tfor # = () € G and n e N, is a character on G, i.e. & continuous morphism
from G to the multiplicative group T = {z e (: |2z} = 1}. The group G of
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all characters on @ is given by

(8) by = H szr new,
k=0

whe% (Poky kt]e N) are the binary coefficients of w e N. The. system. (¢,
% € N) 18 orthonormal on &, with res : 3 X 5
SRS . y With ‘respect to the Haar measure w ([25,

Denoting by G, the set formed of all v e @ having only a finitely
many Nonzero components it follows that @, is a countable dense subgroup
of G. For z = (u,) e G, with Zy =1 and 2, = 0 for k> m, put

(9) a® = (g, @y, .. 9 @moyy 0,1,1,.00)

and let G = {o*: z ¢ Q).
FFor cach number z ¢ [0, 1) consider its dyadic expansion

(10)

and call the numbers 4, e { he  ayadic coofficie
i N A n1<l)2-:'i,_’ i Cl?’\}% Lhc;. _(u,‘fa(._iu f::of_f}z,c?r..n.ts of . If Qs =
= <9p » Py e N} denotes the set of all dyadie rationals
rom [0,1), then. by the dyadic expansion of g number 2 € Q, we ghall
mca.n_the expansion of the form (10) which terminates in 0’s.

Iine's map p:[0,1) -+ @ is defined by

(11) p(x) = (a;o’ Tyyens)

where , are the adic coefficients of » e [0, 1 1t € i
dys g ients of . 1t follows

one to onme mapping of [0,1) onto G\ Gi. i Rt
Denote by U(6) the set of all real-valued continuous f i

5 A 5 : aal- iontinuous functions

f_ and by ¢ the set of all real-valued functions on [0, 1) which are co?f

}1}1110113 at every dyadic irrational from [g, 1), are continuous from the

11&:} on j'[ﬂ’é()G?n'('l have finite limits from the left on (0,1]. The map
0 JEULG), 18 2 vector space isomorphism between (i) .

called the ca.:rfom?cal 1somorphism and : SeRs Q) mid Gy

(12) neNN.

Wy = ‘-Pn°.°7

This isomorphism does permit to carr G i i g :
Walsh - out the inv ;
7alsh analysis o two Ways - y € Investigations in

(a) by methods of real analysis i.e. using the Walsh system w and

the Lebesgue integration, or

(b) by methods of harmonic analysis, i.e. using th ch
G and Haar integration for functions on @. S 11 GHracter,gronp

We shall prove double condensation of singularities theorems in

both of these caseg.



122 Tt Stefan Cobzas ) 4

Denote by L° the space of all measurable a.e. finite funetions from
[0,1) to Ry {4 oo} and by L¥ = L*[0,1), 1 < p < oo, the usual Lebesgtie
spaces of measurable functions, with the corresponding norms (see [11]).
The Lebesgue measure on [0, 1) will be denoted by a.

3. CONVERGENCE OF WALSII-FOURIER SERIES

For a function [ in LYG) (respectively in I') the Walsh—Fourier
coefficients are defined by
. fe2 1

(13) f(n) = S i, dp (respectively = S f S W, d?\)
2 s
The Walsh—Fourier series of a function f in IMQ) (in L) is- -

(14) 8= F(k)be ( respectively Wf = 3. £ () wk)
x=0 ' i . 2-=0
and the partial sums are given by

(15) Suf = %, )b (respectively Wf — 3 ?(km).
k=0 k=0 3

We shall call a Walsh—Tourier series briefly a Walsh series.
It is worth to mention that many results from classical Fourier
analysis have their analogs in Walsh analysis. For instance, Riemann —

Lebesgue lemma asserting that lim}‘('n) =0 and the application f |—>}‘

Ho 00

from IY@) (or L') to ¢, is linear and continuous of norm < 1. The Riesz—
Fischer theorem is also true: The Walsh system is a complete orthonor-
mal system in L2 Riemann’s localization principle is also valid (see [25]

for details).
Defining the convolution of two tfunetions f, g € L(G) by

(16) (Frglz) = S ) (o + 0) - dult), wed,

G
and denoting by D, = g: $r, n € N, the Dirichlet kernel, then
2=0
amn 8,f =f+D,, neN.

In order to define an appropriate convolution on L' we need a new
operation on [0, 1) called dyadic addition and defined by

(18) - s+y=7% o — gl 2747,
k=0
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where (#;) and (y,) are the dyadic coefficients of #,y e [0,1). Note that
[0,1) is not a group under + as this operation is not associative and

[0, 1) is not closed with respect to . The formula (18) defines also a
metric on [0,1) and the induced topology is called the dyadic lopology
of [0,1). The dyadic topology differs essentially from the usual topolog'}"
In Section 6.we shall present some of its characteristics properties. Calliﬁg.
a function f: [0,1) — B which is continuous from the dyadic topology
to the usual topology W-continuous, then every function in Cy is unifor-
mly W-continuous, but not every W-continuous function belongs to
Oy ([25, p. 11]).

Now, defining the convolution of two functions fr9el’ by
1

(19) (@) = S f@) - g4+ dnw), e [0, 1)

0
. ]
and denofing by A, = 2wy, the Dirichlet kernel in this case, then ziga-in

k=0

one has

(20) W.f=f®A, nekN.
We shall now mention .some positive results c i
. h _ tion . ' :oncerning conver-
gence qf W a-Iialy series. 1f fe I} then the Cesaro means (ol f))io of the
coauences  (Sufli>, @n(f) = (m A+ 1)U F + 8 f + ... L Guf), con-
verge poinfwisely on [0,1) to f ([25, Th. 2.5.16)] and it Je 0y then
gamgj)‘) converges to - uniformly on [0, 1) (Fejér's theorem [25, Tx. 2.10]).
d-m(ia}les‘{l);} H}] type Lheuuzn} 1¥); also valid in this situation : For 1 < P<oo
and je L’ the sequence (S,f) converges a.e. to f (a resul aine
Billard [2], see also [25, T]lt 3.7.147). " ] e
But we are particularly interested in divergence r s for
o DUk e g % 1L ce results for Walsh
series. Ifor f e L&) (on L) the Lebesgue maximal functions are defined by

(21) S¥f(@) = sup {|8,f(2)] : w e N},
Tespectively
(22) Wf(x) = sup {|W,f(z)|: n € N}.

A set Ec @ is called a sel of diverge " )

L : (La sel of awvergence (ol unbounded divergence) for
f:((?‘) if phere_e:_{[lsts a Tunction fe I? (¢) whose Walsh series digrerge?s at
eVery point of I (respectively S¥*f(z) = co for all z € &). Similar notions
are defined for [0, 1) and the spaces 1”. Put also ‘ '

(23) UD(f) = {zre@: SE(ah= oo} (respectively W*f(x) = o),

nfOI‘ a function f e L7(@) (rspectively in L?).

~ Concerning the existence of sets of divergence we mention the follo-

0g results — every subset F of G or Haar measuye zero is a set of diver-
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gence for I7(@), 1 £ p < oo ({25, Th. 4.5.111) and if ¥ is compact and of
Haar measure zero then it is a set of divergence for O(G) ([25], Th. 4.5.13).

In the following theorems we collect the divergence results needed
for the proofs of double condensation of singularities theorems.

3.1 TurorEM () If Ec@ is a set of divergence for the space I7(q)
(where 1 < p << oo) then B is also a set of unbounded divergence for LP(Q)
([25, Th. 4.5.9.]).

(b) There exists « function fe LNG) whose Walsh series diverges
everywhere on G ([25, 4.5.12]). '

3.2 Remark. In [25] some divergence resuits are proved in the more
general context of the homogeneous Banach subspaces of LYG).

The corresponding divergence results for the space I are:

3.3. TaroREM (a) If fe L' and Wf diverges a.e. on [0,1) then Wf
diverges unboundedly on a dense subset of [0,1) ([25, Th. 6.5.18]).

(b) There exists a function fe L' whose Walsh series diverges a.c.
on [0,1) ([25, Th. 6.5.14 and 6.5.167]) i

3.4 Remark. In fact, in [25] 18 proved the existence of functions in I*

with a.e. divergent Walsh series and satisfying also some growth condi-
tions.

4. DOUDLE CONDENSATION OF SINGULARITIHS IN BANACH SPACES

In this section we shall present a slight extension of the double
condensation of singularities result, proved in [7, Th. 5.2] and, to this
end, we recall some needed notions and results related to the Baire cate-
gory theorem.

A subset of a topological space T is called nowhere dense if int A — ©.
A countable union of nowhere dense subsets of T is called a set of
first (Batre) category. A complement of a set of first category is called a
residual sel. 1t each residual subset of 7' is dense in T then T is called
a Baire space (see [24, p. 97]). A topological space T' is a Baire space if and
only if for every countably family of dense open subset of T their inter-
section is dense in T. An uncountable dense Gs-subset of T'is called super-
dense in T ([7]). Every complete metric space is a Baire space and every
dense Gy-subset of a complete metric space without irolated points is
superdense in 7' ([24, Th. 5.13]). We ghall need the following version of

this result :

41 Proposrrion ([41). If T is a Batre space satisfying the separa-
tion axiom T, and having no isolated points, then cvery restdual subset of
T is uncountable and dense in T. In particular, every dense Gy-subset of T
is superdense in T.

Now, we are in a position to state the double condensation of sin-

gularities theorem :

4.2 THEOREM. Let X be a monzero Banach space, ¥ a normed space
and T a nonvoid separable and metrizable Baire space, without tsolated
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points. Let also 7 = {A,: i eI} be a family of mappings from X X T to
Y, satisfying the following conditions :

i) A(,0): X ¥ 'isl cor:btiamous, | Az + u, DIl < Hdoa, I +
T Ay O end [ Ada- @, O < 142, O], for cach iel, te T, a;yeX
and every scalar o, with {a| < 13

(i) Af(z,): T — Y is continuous for each i€l and v € X;

(iil) there eaists a demse subset Ty of 1 such that sup (|4, t]):
zeX, |2l <1, tel} = oo for all te T, K

Then, there ewists a superdense subset X, of X such that, for every » e X,
the set {te T :sup {||A,(w,1)]|: 7 el} = oo} 4s superdense in T.

Proof. The only modifications with respect to Theorem 5.2 in [T7]
refer to the hypotheses on the space 7. In [7] it was supposed that 7'
is a nonvoid separable complete metric space without isolated points and
the proof was baged on the above-mentioned result of W. Rudin [24],
concerning the existence of superdense subset in such spaces. Now, using
Proposition 4.1, the proof given to Theorem 5.2 in [7] can be transpo-
sed verbatim 1o obtain a proof of Theorem 4.2. The metrizability hypo-
thesis on 7' iy Necessary because in the proof one works with a countable
subset 7' of T, which is still dense in 7'and, in general {opological spaces,
separability is not a hereditary property ([14, Ch. 4, Problem F]).

5. DOUBLE CONDEXSATION OF SINGULARITIES FPOR TIHERE SPACE 1)(G)

. Tvl_m.- double condensation of singulavities theorem for Walsh series
in LXG) is the following : 3

5.1 TukorEM There ewisls o superdense subset X, of NG such that
Jor each fe X, the set UD(f) == {xve@: S8¥f(w) = oo} 48 superdense in G.
oy Proof. Take in Theorem 4.2, X = M), T =G, Y =LRandlet 4, :
L (G%r X G — R be defined by d,.(f, ) = S,f(), for fe LNG), » e and
neN. .
_ As G is a compact metric space it is complete and geparable (a coun-
ftfablc dense subset of G s Gy=={wvel@:e=(r)In Yz na =0} It
follows that ¢ is a Baire space. To sbow that ¢ has no isolated points ley @
bg an arbitrary clement of G. It @ € &, and w, = 0 for k » », then putting
o = w4 y* where Wt =1 and ;=0 for-all ke N, k#n -|- b, it
1?:0110\\!.*4&11&1; a7 for all » e N and the sequence (%) tends to w, for
7 oo, If we (NG, then &* = (¥,..., ¥ 0,...) are all distinet from @
and bavoe limit #, for n — oo,

For fe LMG) tixed, the {anction A, (f,.) =8.f = zf(i\‘:)~ ;18 con-
I YT o { o Fd ! " k.&h g O .
tinuous on . For a fixed a ¢ 7, the funciion ky(l) = D,(x 4 1) i3 in C(G) <
< L (6, so that A,(f, x) = Sf(l) s Dyl -0 - dpld) S e dNG), 18 a conti-

(e

nuous linear functional on IMG).
By Theorem 3.1, there exiats a function g e FHG) whose Walsh series
Aiverges unboundedly on @ and the-function f, = g/ligl, will have the
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same property.. But then . : _
sup {|4,(f, 2)| : n e N, [ L@, Ifil <1}>
sup {|4u(fo, #)] : ne—N}—S'ﬂfo ”)'—Oo;

for all # € @, showing that condition (iii) in Theowm 4 2 is also verified.
Now, the conclusmn of Theorem 5.1 follows from 'l‘heou,m 4.2.

6. DOUBLE CONDENSATION OF SINGULARITIES FOR WALSH SERIES IN Lt
! S
To prove the double condensation of %mouhutlm for Walsh: seriés
in. L1 -we have to work with the dyadic topology on [0, 1) so. that we shall
study its- charaeteristic plopeltles Writing 1 = 0.11... fmd using : the

formula, (18) the metric + can be extended to [0 1] = [0 1).
"~ The dyadici mtelvals

(24) I(pyn) = [p- 27" (p +1)- 2™, ‘p< 2"‘,i pyneN,

are both open and closed in the dyadic topology and they oenelate thd

dv(ullc topology on [0, 1) — every open subsel of 10,1) can be written
as a cowntable union of mvh intervals. Since every Walsh function w,, is
constant on every dyadie interval, it follows that: it 18 continuous. Wlth
respect to the dyadic topology of [(} 1,

In the following theorem we collect together some: results ‘on the
dyadic topology we need in the plooi of double condensation of singula-
rities theorem.

. 6,1 TusorEM (a) For all-z,y € [0 1], |ov o 1/[ 9& —{—y l‘ﬁékgforef

I
@ implies a* — & and the (rmm s€¢ 18 not e,

(b) The metrie space {[0,1),
pomts

(c) I‘he metl e spaee ([0 1], : ) zs ﬂot complete
(d) The metrw -space ([0, 1) 43 i v Baire space.

A. Ploof Obv1ously that | — y|= L (@r— Yn ) =l < E | — J,I e

| h=0 k=0
--ij:k; 2 = —]— Y, 1mplymﬂ also the validity of the, assertion 1eLLt1nﬂ'-

the d\rfuhc and usual convergence of sequences in [0, 1] Now;-

tm}una #=0,101....10... (the last & .is on the 1n- -th, pocmon, n e N) it
fullnws Hm.l. the . sequence (") conv erges to w= lJlUl[ = 0110

in the usual topolowy But, :L"+m . 272 cAhowmg that (2 ( »y does not conver ge-
to ‘& with respect to the. dyadlc topology.- RTINS0 ¢ iR 1 I
(b) The space ([0,1), —|—) has no isolated points.

Let #e€[0,1), = 0- 2w, .
tion- on the “dyadie’ 1eplese11tat10n o the numbers in. [(}, 1) it follows that

the' set N, = {k e N: &, =0} i§ infinite. ‘Let ¢t N — Ny be @ strietly”

+y s sepmable and has "o wolated_j

.. Taking into account -the conven--

9 Double condensation of singularities 127

increasing bijection and let y" = 27 —o(n ==0.0...010 ... (with1 only ab

the co(?g) th position). Then 2" =& -+ y* is distinet from » and @ —{— 2 g
—- 9—1—em 0, for » — co.

The space ([0,1, —1—) i3 separable.

The set @, of dyadic rationals is countable and dense in ([() 1), —|—)
Tndeed, if # € [0,1), 2"== 0. ¥, . , then puting w" =0- aowl ar,,() ey

N e N it follows that 2" € Qq and “L—l—a," < 2 = i— Datii=d —{—_ = 2—" i 0,
f01 7 - 00. 3 : )

( ¢) To show that the spacc ([o, 1], —l—) is not complete, take again
the sequence "= 0101..10..., n eN congidered in the proof of the

statement (a). Then 'm'H—k' + P 2 lg=n-8 L L 4 @bt 9D

for all k > 1, showing that (2®) is a Ca;uchyrsequenc'e in ([0, 1], bizy -

If the sequence (2") would have a limit » in ([0,1], —,—) then. (by

assertlon a)) it would converge to z in the usual ‘topology too, implying
that 2= 0.110. = in contra,dlctlon to the 1nequahty z —{— A" > 2FE

(d) To plO\ e that ([0, 1) —l—) 1s a Bane %pace we have to show that

1f G,, are demnse OpL]l bubeets of [0, 1) then A= ﬁ @G, iS* still dense . in

- n 0

\([0 1 +) As. the dvadl(, tﬂpology on [0 1) is» oenemted by. the . mter-

vals. (24) it follows . that each G5 can be wntten in the imm

@Y 1 =) By

N o i o 113 oy
T8, 51 s Hil ¢ 1.7 o =0l

where each A, = [@uy bu.g) 182 dyadic.interval of the form (24 . Now,

talkirg' AL, == (a,y Duy) and Gp'= U AnL it [ollows that G’ 1s a bub\'_h‘jh i

I.U H open with respect to the u\l.{d] lupnluu\ As overy G, is —|— ~dense
in [0,1), 4t is dense in [0, 1) with respeci 1o the usual topology, too. It
follows 11'.11‘1 GY B8 dense in tho closed interval [0, 1], with respeel o the
usual lupolnfr\ Sinee every interval A, is of positive length, it is edsily
seen that G 15 also dense in [0, 1] with respect (o the U1 al I,upolu YL

But, asa (umplue mefrie space, the interval [0, 1] is a Baire 'Space,

%0 that the sel 4’ = ﬂ G, is dense in [0, 1] whith respect to the usual
n=0 . ] X -

)

i toij_ol()g Y.
Finally, we show that A = m G, is denso in ([0, 1), +).

n=0
Let 2z e [0,1) and let => 0. Choote neld, n > 1, guch that

2 e and o 2—" <1. A8 the set ‘A" is dense in LO 17, the’ interval

(3/ b + i ") contalns ‘a point yed'cd. Tet "o = 0. a,7, . ..y =0.
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“Yo¥y - - - be the dyadic representations of the numbers #, y. The inequali-
ties 0 € o <y <o - 27" imply @5 =Ygy ..; Buy = Yay aNd &) < Yy
for all & > n, so that

Boby<2l 42 b L = 27

Now, we are in a position to state the double condensation of sin-
gularities theorem in the L' case: ;

6.2 THEorREM. There exists o superdense subset X, of L' such that
for each fe X the set UD(f) = {w e [0,1): W¥f(x) = oo} is superdense in
[0, 1) with respect to the dyadic-topology.

Proof. Tn Theorem 4.2 take XY = L', T = ([0,1), ), ¥ = R and
Ay It X [0,1) - R, defined by A,(f, ) = W,f(x). By Proposition 6.1
(b) and (d) the space 7' verifies the hypotheses required in Theorem 4.2.

1

As W, f(x) == S f@) Dy(z 4 #)-an(), it follows that the functional

4]
Onw: 2> R delined by g, .(f) =W, f(#) is linear and continuous, for each
z €[0,1) and n'e N. For a fixed fe I* the function W,f = ¥, J(k) - w,
k=0

is eontinuous on [0, 1) with respect to the dyadic topology, showing that-
condition (ii) in Theorem 4.2 is fulfilled. Appealing to Theorem 3.3 and
reasoning like in the proof of Theorem 5.1,it follows immediately that.
condition (iii) in Theorem 4.2 iy also fulfilled, which ends the proof of
Theorem 6.2.

It is natural to ask what happens when the interval [0,1) is equip-
ped with the usual topology. The answer follows immediately from Theo-
rem 6.2 :

6.3 COorROLLARY. There exists a superdense subset X, of L' such that,
for every f e X, the set UD(f) contains a set superdense in [0, 1) with res—
peet to the usual topology. ‘ N

Proof. By Theorem 6.2, for every f e X the set UD(f) is G5, uncoun-

table and dense in ([0, 1), —i—), Le. UD(f) = M @,, where G, are open and:
. n=0

dense subsets of the space ([0,1), +). Reasoning like in the proof of’

statement (d) in Theorem 6.1, it follows that the sets G, <G, are open

and dense in [0,1) with respeet to the usual topology. Therefore, the set:

A = (O'O} @G is contained in UD(f) and it is superdense in [0, 1) with res-
n=0

pect to the usual topology.
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