grant of gallar Ballar in Park ments been -t

SELECTIONS ASSOCIATED TO McSHANE'S EXTENSION THEOREM FOR LIPSCHITZ FUNCTIONS Name From Strain Strain Continue theorem, execut a lang Films in more

COSTICX MUSTATA

(Cluj-Napoca) (3) 3 W de militarit es englis en la company

1. Let (X, d) be a metric space and Y a nonvoid subset of X. A function $f: Y \to R$ is called Lipschitz on Y if there exists $K \ge 0$ such that

$$(1,1)$$
 to the support of $|f(x)-f(y)| \leqslant K \operatorname{d}(x,y),$ the support of $f(x)$

for all $x, y \in Y$. A number $K \ge 0$ verifying (1.1) is called a Lipschitz constant for f. It is easy to show that the quantity $||f||_F$ defined by

(1.2)
$$||f||_{Y} = \sup \left\{ |f(x) - f(y)| / \mathrm{d}(x,y) : x, \ y \in Y, \ x \neq y \right\}$$
 is the smallest Lipschitz constant for facility of the smallest Lipschitz constant for facility is

is the smallest Lipschitz constant for f and we shall call it the Lipschitznorm of f. Hellel all of the annual transplace the street difference to the street of

Denote by Lip Y the set of all real-valued Lipschitz functions on Y. The set Lip X and the quantity $||f||_X$ are defined similarly.

Obviously, with respect to the usual operations of addition and multiplication by scalars for functions, Lip Y and Lip X are linear spaces and the functionals $\| \ \|_{\mathcal{X}}$ and $\| \ \|_{\mathcal{X}}$ are seminorms on these spaces. The functionals $\| \cdot \|_{r}$ and $\| \cdot \|_{x}$ are not norms because they vanish on constant functions. In berief banks have have a based at search have a series

Mc Shane [5] proved the following extension theorem for Lipschitz functions:

THEOREM 1. Let (X, d) be a metric space and $\emptyset \neq Y \subset X$. Then every Lipschitz function on Y has a norm preserving extensions to X, i.e. for every $f \in Lip \ Y'$ there exists $F \in Lip \ X$ such that

$$F|_{r}=f$$
 and $\|F\|_{x}=\|f\|_{r}.$

Now let $x_0 \in Y$ be fixed and denote by $\text{Lip}_0 Y$ the subspace of Lip Yformed of all functions in Lip Y vanishing at x_0 , i.e.

(1.3) Lip₀
$$Y = \{f \in \text{Lip } Y : f(x_0) = 0\}.$$

The space Lip_0X is defined similarly:

(1.4)
$$\operatorname{Lip}_{0}X = \{F \in \operatorname{Lip} X : F(x_{0}) = 0\}.$$

In this case the functionals $\| \cdot \|_{Y}$ and $\| \cdot \|_{X}$ are norms on $\operatorname{Lip}_{0}Y$ respectively on Lip_0X and, Lip_0X and Lip_0Y are Banach spaces with res-THERETT FOR ELECTRIC PORTET NO pect to these norms.

Again by Mc Shane's extension theorem, every $f \in \text{Lip}_0 Y$ has a norm preserving extension $F \in \operatorname{Lip}_0 X$. Two such extensions are effectively given by the formulas:

(1.5)
$$F_1(x) = \sup \{f(y) - ||f||_Y d(x, y) : y \in Y\}$$

and

$$\{1.6\} \qquad \mathbb{F}_2(x) = \inf \left\{ f(y) + \|f\|_2 \operatorname{d}(x,y) : y \in Y \right\},$$

for all $x \in X$. Denote by $E: \operatorname{Lip_0 Y} \to 2^{\operatorname{Lip_0 X}}$ the set-valued operator defined for all E. y . T. A number E . Departing our C. I it is estudy Appropriate Secretary

(1.7)
$$E(f) = \{ F \in \text{Lip}_0 X : F|_{Y} = f \text{ and } ||F||_{X} = ||f||_{Y} \},$$

for all $f \in \text{Lip}_0 Y$, and call it the Mc Shane extension operator.

An extremal convex subset of the unit ball B_z of a normed space Zis called a face of B_z , i.e. a convex subset $C \subset B_z$ is a face of B_z if $\lambda x +$ $+(1-\lambda)y\in C$ for two elements $x,y\in B_Z$ and a number $\lambda\in(0,1)$, implies $x, y \in C$. A one-point face is an extremal point of B_z . Obviously every face of B_Z is closed and an extremal point of a face of \tilde{B}_Z is an extremal point set Mg V and the quantities of a sire dillion V and land of B_z .

In the following theorem we summarize some useful properties of plustical by realist for tunctions, Lan. F and tap

the extension operator.

THEOREM 2. Let (X, d) be a metric space, $Y \subset X$, $x_0 \in Y$ fixed and $f\in \operatorname{Lip}_0Y$. Then where $f\in \operatorname{Lip}_0Y$ is a sum of f and f

1° E(f) is a nonvoid convex, bounded and closed subset of Lipo X;

 2° Every $F \in E(f)$ verifies the inequalities

(1.8)
$$F_1(x) \leqslant F(x) \leqslant F_2(x), \ x \in X,$$

where F_1 , F_2 are the extensions of f given by (1.5) and (1.6);

3° For $||f||_{Y}=1$, the set E(f) is a face of the unit ball $B_{\mathrm{Lip}_{\bullet}X}$ if

and only if f is an extremal point of the unit ball of Lip, Y.

Proof. 1°. Let $F, G \in E(f)$ and $\lambda \in [0, 1]$. Obviously that $(\lambda F + (1 - 1)^{-1})^{-1}$ $\begin{array}{lll} & -\lambda)G)|_{Y} = f & \text{and} & \|\lambda F + (1-\lambda)G\|_{X} \leqslant \lambda \|F\|_{X} + (1-\lambda)\|G\|_{X} = \\ & = \lambda \|f\|_{X} + (1-\lambda)\|f\|_{Y} = \|f\|_{Y}, & \text{Since} & \|\lambda F + (1-\lambda)G\|_{X} \geqslant \|(\lambda F + (1-\lambda)G)\|_{X} = \\ & = \lambda \|f\|_{X} + (1-\lambda)\|f\|_{Y} = \|f\|_{Y}, & \text{Since} & \|\lambda F + (1-\lambda)G\|_{X} > \|(\lambda F + (1-\lambda)G)\|_{X} = \\ & = \lambda \|f\|_{X} + (1-\lambda)\|f\|_{Y} = \|f\|_{Y}, & \text{Since} & \|\lambda F - (1-\lambda)G\|_{X} > \|f\|_{Y} = \|f\|_{Y}. \end{array}$ $+(1-\lambda)G|_{Y}|_{Y}=||f||_{Y},$ it follows that $\lambda F+(1-\lambda)G\in E(f),$ proving the convexity of E(f).

As $||F||_{\mathcal{X}} = ||f||_{\mathcal{F}}$, for all $F \in E(f)$, it follows that E(f) is bounded.

To prove the closedness of E(f), let (F_n) be a sequence in E(f) converging to a function $F \in \text{Lip}_0 X$. As $F(x_0) = 0 = F_n(x_0)$, for all $n \in N$, it follows that

$$|F_n(x)-F(x)|=|F_n(x)-F(x)-(F_n(x_0)-F(x_0))|$$

for every $x \in X$, implying the pointwise convergence of the sequence $(F_n(x))$ to F(x), for all $x \in X$. Since $F_n(x) = f(x)$ for all $x \in Y$ and all $n \in N$ it follows F(x) = f(x), for all $x \in Y$. Also $F_n \to F$ in $\text{Lip}_0 X$ and $||F_n||_{\mathcal{X}} = ||f||_{\mathcal{Y}}, n \in \mathcal{N}, \text{ imply } ||F||_{\mathcal{X}} = \lim ||F_n||_{\mathcal{X}} = ||f||_{\mathcal{X}} \text{ showing that } \widehat{F} \in E(f).$

2°. To prove the second inequality in (1.8) suppose, on the contrary, that there exists $x_1 \in X$ such that $F(x_1) > F_2(x_1)$. Since the functions F, F_2 are continuous on X and $F|_Y=f=F_2|_Y$, it follows that they agree on the closure \overline{Y} of Y. Therefore $x_1\in X\setminus \overline{Y}$, implying $d(x_1,y)>0$ for all $y \in Y$. Taking into account definition (1.6) of F_2 and the inequality $F_2(x_1) < 0$ $F(x_1)$, there exists an element $y_i \in Y$ such that

$$f(y_1) + \|f\|_{\mathcal{F}} \, \mathrm{d}(x_1, y_1) < F(x_1) \, \mathbb{I}_{\mathcal{F}} \, \| \, \mathbb{I}_{\mathcal{F}} \, \|$$

As $f(y_1) = F(y_1)$, the inequality (1.9) gives the contradiction $||f||_F = 1$ $= ||F||_{X} \geqslant (F(x_1) - F(y_1))/d(x_1, y_1) > ||f||_{Y}.$

The first inequality in (1.8) can be proved in a similar way. 3°. Let B_{Lip_0Y} , B_{Lip_0X} be the closed unit balls of the spaces Lip_0Y respectively, Lip_0X . Let f be an extremal point of B_{Lip_0Y} and suppose that H_1 , $H_2 \in \hat{B}_{\text{Lip}_0 X}$ and $\lambda \in (0,1)$ are such that $\lambda H_1 + (1-\lambda)H_2 \in E(f)$. Since f is extremal the equality $\lambda H_1|_{Y} + (1-\lambda)H_2|_{Y} = f$ implies $H_1|_{Y} = f$ $= f = H_2|_{\mathcal{V}}. \text{ Also } 1 = \|f\|_{\mathcal{V}} \leqslant \|\lambda H_1 + (1-\lambda)H_2\|_{\mathcal{X}} \leqslant \lambda \|H_1\|_{\mathcal{X}} + (1-\lambda) \|H_2\|_{\mathcal{X}} \leqslant 1 \text{ implies } \|H_1\|_{\mathcal{X}} = \|H_2\|_{\mathcal{X}} = 1 = \|f\|_{\mathcal{V}}, \text{ showing that } H_1, H_2 \in E(f).$

Now, suppose that $f_{*} ||f||_{Y} = 1$, is not an extremal point of $B_{\text{Lip}_{\bullet}Y}$. Then there exist two distinct elements f_1, f_2 in B_{Lip_0Y} and $\lambda \in (0, 1)$ such that $\begin{array}{l} f = \lambda f_1 + (1-\lambda)f_2. \ \ \text{If} \ \ H_i \in E(f_i), \ \ i = 1, 2, \ \ \text{then} \ \ H_1|_Y + (1-\lambda)H_2|_Y = \\ = \lambda f_1 + (1-\lambda)f_2 = f \quad \ \text{and} \quad 1 = \|f\|_Y = \|\lambda H_1\|_Y + (1-\lambda)H_2|_Y \| \leqslant \\ \leqslant \|\lambda H_1 + (1-\lambda)H_2\|_X \leqslant 1, \ \text{showing that} \ \ \lambda H_1 + (1-\lambda)H_2 \in E(f). \ \ \text{Since} \end{array}$ $H_i|_{Y}=f_i\neq f, i=1, 2,$ it follows that $H_i\in E(f), i=1, 2$ and E(f) is not a face of $B_{\text{Lip}_{\theta}X}$.

Remark 1. The extensions F_1 , F_2 of a function $f \in \text{Lip}_0 Y_i$, given by (1.5) and (1.6), are extremal points of the face E(f) and consequently they are extremal elements of the unit ball $B_{1,ip_{\theta}N}$, too. Indeed, if $F,G \in$ $\in E(f)$ and $\lambda \in (0,1)$ are such that $F_1 = \lambda F + (1-\lambda)G$ then, by (1.8), $F_1 \leq F$ and $F_1 \leq G$ implying $F = F_1 = G$. The extremality of F_2 is proved similarly. according to the world (M.2) charact boats notice to

because
$$Y^{\perp}=\{F\in \operatorname{Lip}_{0}X:F|_{Y}=0\}$$
 , where

be the annihilator subspace of Y in/Lip X: A rest of 1, seeds lists a color

139

A subset Λ of $\operatorname{Lip}_0 X$ is called proximinal in $\operatorname{Lip}_0 X$ if every $F \in \operatorname{Lip}_0 X$ has a nearest point in Λ , i.e. there exists $G \in \Lambda$ such that $||F - G||_{\mathbf{X}} =$ $= d(F, \Lambda)$, where many additional and all more of and the state of the contract of the state o

$$d(F, \Lambda) = \inf \{ ||F - H||_{X} : H \in \Lambda \}.$$

The metric projection $P_{\Lambda}: \text{Lip}_0X \to 2^{\Lambda}$ is defined by

$$P_{\Lambda}(F)=\{G\in\Lambda:\|F-G\|_{\mathbb{X}}=\operatorname{d}(F,\Lambda)\}.$$

If $P_{\Lambda}(F)$ is a singleton for every $F \in \text{Lip}_0 X$ then Λ is called a Chebyshevian subset of $\operatorname{Lip}_0 X$.

There is a closed relation between the extension operator E and the projection operator $R_{v,1}$, illustrated in the following theorem:

THEOREM 3. The following assertions hold:

1° The subspace Y^{\perp} is proximinal in Lip_0X ;

2º The equality with the second and the second and

(2.1)
$$d(F, Y^{\perp}) = |F|_{Y}|_{F_{r}}$$

is true for all $F \in \operatorname{Lip}_0 X$;

3° A function $G \in Y^{\perp}$ is a best approximation element for F if and only if there exists $H \in E(F|_{r})$ such that $\hat{G} = F - H$, or equivalently

$$(2.2) \qquad P_{Y^{\perp}}(F) = F - E(F|_{Y}).$$

Proof. First we prove formula (2.1). If $F \in \text{Lip}_{\theta}X$ then for any $G \in \mathbf{Y}^{\perp}$, this is the majority multivalety map is hilly and further majority has

$$\begin{split} \|F\|_{Y} &= \sup \left\{ |F(y) - F(y')| / \mathrm{d}(y,y') : y,y' \in Y, \ y \neq y'
ight\} = \ &= \sup \left\{ |(F-G)(y) - (F-G)(y')| / \mathrm{d}(y,y') : y,y' \in Y, \ y \neq y'
ight\} \ &\leqslant \sup \left\{ |(F-G)(x) - (F-G)(x')| / \mathrm{d}(x,x') : x,x' \in X, \ x \neq x'
ight\} \ &= \|F-G\|_{Y}, \end{split}$$

implying that $||F|_F||_F \leqslant d(F, Y^{\perp})$.

On the other hand, by Theorem 1, there exists $H \in \text{Lip}_0 X$ such that $H|_{Y}=F|_{Y}$ and $||H||_{X}=||F|_{Y}||_{Y}$. It follows that $F-H\in Y^{\perp}$ and $||F|_{Y}||_{Y}$ $= \|F - (F - H)_X\| \geqslant \inf \{ \|F - G\|_X : G \in Y^{\perp} \} = \mathrm{d}(F, Y^{\perp}), \text{ showing that } \|F|_{F}\|_{F} = \mathrm{d}(F, Y^{\perp}).$

Assertion 3° and formula (2.2) follow from [6], Lemma 1, p. 223 and assertion 1° follows from 3°.

Now, by Theorem 2, 1°, the set $P_{v,l}(F) = F - E(F|_F)$ is bounded, convex and closed, for any $F \in \operatorname{Lip}_{\mathfrak{o}} X$.

We shall say that the set $Y \subset X$ has the property (U) if every $f \in$ $\in \operatorname{Lip}_0 Y$ has a unique Lipschitz extension $F \in \operatorname{Lip}_0 X$, i.e. E(f) is a singleton for every $f \in \text{Lip}_0 Y$. By Theorem 3, the set \hat{Y} has property (U) if and only if Y^{\perp} is a Chebyshevian subspace of Lip₀X.

2. A natural question is when have the set valued operators E and $P_{v\perp}$ continuous selections. If $S:A\to 2^B$ is a set-valued application, a function $s: A \to B$ is called a selection for S if $s(x) \in S(x)$, for all $x \in A$.

In the following theorems, we shall prove the existence of continuous selections for the operators E and $P_{v,1}$ in the particular case X = R, with the usual distance d(x, y) = |x - y|.

THEOREM 4. Let $X=R, Y=[a,b] \subset R$ and $x_0 \in [a,b]$ fixed. Then the extension operator $E: \mathrm{Lip}_0 Y \to 2^{\mathrm{Lip}_0 R}$ has a continuous and positively homogeneous selection e. **Proof.** Define $e_2: \operatorname{Lip}_0 Y \to \operatorname{Lip}_0 R$ by

$$e_2(f) = F_2, \quad f \in \operatorname{Lip}_0 Y,$$

where F_2 is the maximal extension of f given by (1.6). If $\alpha > 0$ then

$$\begin{array}{l} e_2(\alpha f)(x) = \inf \left\{ \alpha f(y) + \|\alpha f\|_{\mathbb{K}} |x-y| : y \in [a,b] \right\} \\ \\ = \alpha : \inf \left\{ f(y) + \|f\|_{\mathbb{K}} |x-y| : y \in [a,b] \right\} = \\ \\ = \alpha : F_2(x) \end{array}$$

showing that e_2 is positively homogeneous.

To prove the continuity of e_2 for $\epsilon > 0$, take $\delta = \epsilon/3$ and show that

$$|e_2(f) - e_2(g)| \leqslant \varepsilon,$$

for all $f, g \in \text{Lip}_{\theta} Y$ such that $||f - g||_{Y} < \delta$.

It is easy to check that the maximal extension F_{2} of f has the form

$$F_2(x)=f(a)-\|f\|_{\mathbf{r}}(x-a), ext{ for } x< a$$

$$=f(x), ext{ for } x\in [a,b]$$

$$=f(b)+\|f\|_{\mathbf{r}}(x-b), ext{ for } x>b.$$

If $g \in \operatorname{Lip}_0 Y$ is such that $||f - g||_{\mathcal{V}} < \delta = \varepsilon/3$, then similarly the maximal extension G_2 of g has the expression:

$$G_2(x) = g(a) - \|g\|_Y(x-a), \text{ for } x < a$$

$$= g(x), \qquad \text{ for } x \in [a, b]$$

$$= g(b) + \|g\|_Y(x-b), \text{ for } x > b.$$

It follows that the difference $H_2=F_2-G_2$ has the expression :

$$egin{align} H_2(x) &= f(a) - g(a) - (\|f\|_Y - \|g\|_Y)(x-a), & ext{for } x < a \ &= f(x) - g(x), & ext{for } x \in [a,b] \ &= f(b) - g(b) + (\|f\|_Y - \|g\|_Y)(x-b), & ext{for } x > b \ \end{cases}$$

We have to consider several cases:

Case 1°. $x, y > b, x \neq y$. In this case

$$\begin{array}{ll} |H_2(x)-H_2(y)| & \leq |\|f\|_{\mathbb{K}} - \|g\|_{\mathbb{K}} ||x-y|| \\ \\ & \leq \|f-g\|_{\mathbb{K}} \cdot |x-y| < \varepsilon ||x-y||. \end{array}$$

Case 2°. $x, y < a, x \neq y$. Reasoning like in Case 1° one obtains

(2.5)
$$|H_2(x) - H_2(y)| < \varepsilon \cdot |x - y|.$$

Case 3°. $a \leqslant x, y \leqslant b, x \neq y$. In this case

$$\begin{array}{ll} (2.6) & |H_2(x)-H_2(y)| = |(f-g)(x)-(f-g)(y)| \leq \\ & \leq ||f-g||_{\mathbb{X}}\cdot|x-y| \leq (\varepsilon/3)\cdot|x-y|. \end{array}$$

and Case 4° : $a < x < b \le y$. In this case, a position of the events

$$|H_2(x) - H_2(y)| = |(f - g)(x) - (f - g)(b) -$$

 $|f||_{\mathcal{L}_{+}} = |g||_{\mathcal{L}_{+}} |g||_{\mathcal{L$

$$|x-y| \leq 2 \cdot ||f-g||_{Y}|x-y| \leq (2\varepsilon/3) \cdot |x-y|.$$

Case 5°. $y < a \le x \le b$. Reasoning like in Case 4° one obtains

$$|H_2(x) - H_2(y)| \leq (2\epsilon/3) |x - y|.$$

Case 6° , $x \leq a \leq b \leq y$. In this case

$$(2.9) |H_{2}(x) - H_{2}(y)| = |(f - g)(a) - (||f||_{Y} - ||g||_{Y})(x - a)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}}$$

$$- (f - g)(b) - (||f||_{Y} - ||g||_{Y})(y - b)|^{\frac{1}{2}} \le$$

$$\leq ||f - g||_{Y}|a - b| + ||f||_{Y} - ||g||_{Y}| \cdot |x + y - a - b| <$$

$$<3 \cdot ||f - g||_{Y}|x - y| < 3\delta \cdot ||x - y|| = \varepsilon \cdot |x - y|.$$

Taking into account the inequalities (2.4)-(2.9), it follows that

$$\|F_2 - G_2\|_{\mathcal{X}} = \|H_2\|_{\mathcal{X}} = \sup \left\{ |H_2(x) - H_2(y)| / |x - y| : x, y \in R, \, x \neq y \right\} < \varepsilon$$

i.e.
$$|e_2(f)-e_2(g)|$$

Remark 2. The selection $e_1(f) = F_1$, where F_1 is the minimal extension of f defined by (1.5) is also continuous and positively homogeneous. This can be proved directly or taking into account the equality

(2.10)
$$e_1(f) = -e_2(-f),$$

which holds for all $f \in \text{Lip}_0 Y$.

Combining these two results one obtains the following consequence:

COROLLARY 5. The extension operator $E: \mathrm{Lip}_0 Y \to 2^{\mathrm{Lib}_0 R}$ has a continuous and homogeneous selection given by

$$e(f) = (1/2) \cdot (e_1(f) + e_2(f)), f \in \text{Lip}_0 Y.$$

Proof. Obviously that e is continuous and positively homogeneous. On the other hand by (2.10), it follows

$$e(-f) = -e(f), f \in \operatorname{Lip}_0 Y,$$

implying the homogeneity of $e: e(\alpha f) = \alpha \cdot e(f)$, $\alpha \in R$, $f \in \text{Lip}_0 Y$.

3. This section is concerned with the existence of selections for the metric projection $P_{Y^{\perp}}$ in the case X = R, $Y = [a, b], w_0 \in [a, b]$.

A selection $p: \text{Lip}_0 X \rightarrow Y^{\perp}$ of $P_{Y^{\perp}}$ is called additive modulo Y^{\perp} , provided

$$p(F + G) = p(F) + p(G),$$

for all $F \in \operatorname{Lip}_{\tilde{o}} X$ and $G \in Y^{\perp}$.

THEOREM 6. The metric projection $P_{Y\perp}$ has a homogeneous, additive modulo Y^{\perp} and continuous selection p.

Proof. Let e be the homogeneous and continuous selection of the extension operator E, given in Corollary 5. Taking into account Theorem 3 and equality (2.10), define $p: \operatorname{Lip}_0 X \to Y^\perp$ by the formula

$$p = I - e \circ r$$

where $r: \operatorname{Lip}_0 X \to \operatorname{Lip}_0 Y$ is the restriction operator given by $r(F) = F|_{Y}$ and $I: \operatorname{Lip}_0 X \to \operatorname{Lip}_0 X$ is the identity map. Then

$$p(F)=(I-e\circ r)(F)=F-e(F|_{Y})\in P_{Y^{\perp}}(F).$$

Indeed $F = e(F|_Y) = (1/2)(F - F_1) + (1/2)(F - F_2) \in P_{Y,1}(F)$, since the set $P_{v\perp}(F)$ is convex. AT(T.) TO COULLOW.

Obviously the selection p is continuous and

$$p(\alpha F) = \alpha F + e(\alpha F|_{\Gamma}) = \alpha (F + e(|F|_{\Gamma})) = \alpha \cdot p(F),$$

the property of the property of the Albertanian for all $\alpha \in R$, showing that p is homogeneous.

Now

(3.2)
$$p(F+G) = F + G - e((F+G)|_{Y}) = F + G - e(F|_{Y}) =$$
$$= F - e(F|_{Y}) + G = p(F) + G = p(F) + p(G),$$

for all $F \in \text{Lip}_0 X$ and $G \in Y^{\perp}$, since for $G \in Y^{\perp}$, $P_{Y^{\perp}}(G) = \{G\}$ and p(G) = GBy (3.2), the selection p is additive modulo Y^{\perp} and Theorem 6 is. proved.

It is easily seen that the kernel of $P_{X^{\perp 1}}$

$$\operatorname{Ker} P_{Y^{\perp}} = \{F \in \operatorname{Lip_0}X, \ 0 \in P_{Y^{\perp}}(F)\}$$

verifies the equality

(3.3)
$$\operatorname{Ker} P_{Y^{\frac{1}{4}}} = \{F \in \operatorname{Lip}_{0}X : ||F||_{X} = ||F|_{Y}||_{Y}\}.$$

COROLLARY 7. For X = R, Y = [a, b] and $x_0 \in [a, b]$ the following assertions are true: assertion and affine house the product of the

(a) The extension operator E has a linear and continuous selection;

Company is a triangle of the form and to will all the

- (b) The metric projection Pvhas a linear and continuous selection;
- (c) There exists a subspace W of the subspace $\operatorname{Ker} P_{\scriptscriptstyle Y\perp}$ such that every $F \in \operatorname{Lip}_0 X$ can be uniquely represented in the form F = H + G, with $H \in W$, $G \in Y^{\perp}$, i.e. the subspace Y^{\perp} is complemented in $\text{Lip}_0 X$.

Proof. (a) We show that the application $e: \text{Lip}_0 Y \to \text{Lip}_0 X$ defi-The state of the company of the whitehold of the state of ned by

(3.4)
$$e(f) = (1/2)(F_1 + F_2),$$

where F_1 , F_2 are the extremal extensions of f given by (1.5) and (1.6), is linear and continuous selection of E.

Writing explicitly e we find that

$$e(f)(x) = f(a), \text{ for } x < a,$$

$$= f(x), \text{ for } x \in [a, b],$$

$$= f(b), \text{ for } x > b,$$

for any $f \in \text{Lip}_0 Y$. Obviously $e(\alpha f + \beta g)(x) = \alpha \cdot e(f)(x) + \beta \cdot e(g)(x)$ for all $x \in R$ and all $f, g \in \text{Lip}_{\alpha}Y$, $\alpha, \beta \in R$, showing that e is linear. The continuity of e was proved in Corollary 5.

(b) The application $p: \text{Lip}_0 Y \to Y^{\perp}$ defined, for $F \in \text{Lip}_0 X$, by នោះនេះប៉ែរ៉ុំត្រែត្រប៉ែរ ខ្មីសូមិស៊ីម៉ែនៅកែនៈប៉ូនែន។ប្

(3.5)
$$p(F) = F - e(F|_{Y}) = F - (1/2)(F_1 + F_2),$$

where F_1 , F_2 are the extensions given by (1.5), (1.6), is linear and continuous.

(c) Let

(3.6)
$$W = \{e(F|_X) : F \in \text{Lip}_0 X\}.$$

The linearity of e implies that W is a subspace of $\operatorname{Lip}_0 X$. By (3,3) and the equality $\|e(F)\|_{\mathcal{X}}\|_{\mathcal{X}} = \|F\|_{\mathcal{Y}}\|_{\mathcal{Y}}$

$$||e(F|)_Y||_X = ||F|_Y||_Y$$

it follows that $W \subset \operatorname{Ker} P_{V^{\perp}}^{(n)}$.

For $F \in \text{Lip}_0 X$ define

(3.7)
$$G(x) = 0$$
, for $x \in [a, b]$ $G(x) = F(x) - F(a)$, for $x < a$ $G(x) = F(x) - F(b)$, for $x > b$

(3.8)
$$(x) = F(x)$$
, for $x \in [a, b]$ $= F(a)$, for $x < a$ $= F(b)$, for $x > b$.

Then F = H + G, $G \in Y^{\perp}$ and $H = e(F|_{Y}) \in W$.

To prove that LipoX is the topological direct sum of the subspaces Y^{\perp} and \hat{W} , it is sufficient to prove that the projection operator on \hat{Y}^{\perp} is continuous, i.e. that the application $F \to G$, where $G \in Y^{\perp}$ is the function defined in (3.7) is a linear and continuous operator from complying at 1 marries of 1 miles and 1 miles

The linearity is obvious. To prove the continuity suppose that $F_n \overset{(7)}{(7)} F$ in $\operatorname{Lip}_0 X$, i.e. $||F_n - F||_X \to 0$. Then

$$G_n(x)=0,\;x\in [a,b]$$

$$=F_n(x)-F_n(a),\;x< a$$

$$=F_n(x)-F_n(b),\;\;x>b$$

stituing of buts

and
$$U_n(x) = G_n(x) - G(x) = 0, \quad x \in [a,b]$$
 $= F_n(x) - F(x) + (F(a) - F_n(a)), \quad x < a$ $= F_n(x) - F(x) + (F(b) - F_n(b)), \quad x > b.$

States - Tables Cooks Removed - Lagues I ages de

Again, we have to consider several cases: Case 1. x, y < a. In this case

$$|U_n(x) - U_n(y)| = |(F_n - F)(x) - (F_n - F)(y)| \le ||F_n - F||_X \cdot |x - y|.$$

The same inequality is obtained for x, y > b.

Case 2. a < x < b < y. In this case

$$|U_n(x) - U_n(y)| = |U_n(y)| = |F_n(y) - F(y) - (F(b) - F_n(b))| =$$

$$= |(F_n - F)(y) - (F_n - F)(b)| \le ||F_n - F||_X |y - b| \le ||F_n - F||_X \cdot |x - y||$$

The same inequality holds for x < a < y < b.

Case 3. x < a < b < y. In this case

$$|U_n(x) - U_n(y)| = |F_n(x) - F(x) - (F_n(a) - F(a)) - F_n(y) + F(y) + F_n(b) - F(b)| \le |(F_n - F)(x) - (F_n - F)(y)| + |(F_n - F)(b) - F(b)| \le ||F_n - F||_X \cdot |x - y| + ||F_n - F||_X \cdot (b - a)$$

$$\le 2||F_n - F||_X \cdot |x - y|.$$

. It follows that

$$|U_n(x) - U_n(y)| \leq 2||F_n - F||_X \cdot |x - y|,$$

والمراجع المراجع المرا

for all $x, y \in R$, implying $||U_n||_X \leq 2||F_n - F||_X \to 0$.

It follows that $F_n \to F$ implies $G_n \to G$, showing that the projection operator on Y1 is continuous and consequently Lip, X is the direct sum of Y- and W. Corollary 7 is completely proved.

Remarks 3. (a) In the considered case $(X = R, Y = [a, b], x_0 \in$ $\in [a, b]$), we have $e_1(f) \neq e_2(f)$, for all $f \in \text{Lip}_0 Y$, $f \neq 0$. In fact $e_1(f) < e(f) <$ $\langle e_2(f), f \operatorname{Lip}_0 Y.$

(b) Let X = [0,1] with d(x,y) = |x-y|, $Y = \{0,1\}$ and $x_0 = 0$ Then $e_1(f) = e_2(f) = e(f)$, for all $f \in \text{Lip}_0 Y$. It follows that $Y^{\perp} = \{F \in \text{Lip}_0 X \}$ $: F(0) \stackrel{\text{1.0}}{=} F(1) \stackrel{\text{2.0}}{=} 0$ is a Chebyshevian subspace of Lip₀X. In this case $\operatorname{Lip}_{0}X = \operatorname{Ker}P_{Y^{\perp}} \oplus Y^{\perp}$ and the extension operator E and the metric projection $P_{v\perp}$ are linear and single valued.

REFERENCES

1. Alfsen, E. M., Effross, E., Structure in real Banach spaces, Ann. of Math. 96 (1972), 98-173. 2. Czipser, J., Géher, L., Extension of Functions satisfying a Lipschitz conditions. Acta Math.

Acad. Sci. Hungar 6 (1955), 213-220,

3. Deutsch, F., Wu Li, Sung-Ho Park, Tictze Extensions and Continuous Selections for Metric Projections. J.A.T. 64 (1991), 55-68.

4. Fakhoury, H., Sélections linéaires associées au théorème de Hahn-Banach, J. Funct. Analysis 11 (1972), 436-452.

5. Mc Shane, E. J., Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842. 6. Mustăța, C., Best Approximation and Unique Extension of Lipschitz Functions, J.A.T. 19

(1977), 222-230.

7. Mustăta, C., M - ideals in metric spaces, "Babeş-Bolyai" University, Fac. of Math. and Physics, Research Seminars, Seminar on Math. Anal., Preprint Nr. 7, 1988, 65-74.

8. Rudin W., Functional Analysis, McGraw-Hill 1973.

Received 15.V.1992

Institutul de Calcul Oficiul Postal 1 3400 Cluj-Napoca Romania