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A MEASURE OF CONVEXITY OF SEQUENCES
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1. Iniroduction

In [1] a hierarchy of convexity of functions is proved which we
have transposed in [4 ] for convaexity of sequences and in [3] lor p,q-con-
vexity of sequences. But this hierarchy is also related to some linear
transformations that preserves {he convexity. Though there are some
characterizations of such transformations (see [2] and [6]) there is no
concrete example it the casze of Pyg-convexity. We shall give here such
examples in the case p = g. We have generalized the result of [4] in
[5] with the help of a measure of convexily. We want to t{ranspose it
Bow 10 p,p-convexity which we call here only p-convexity, In fact it
can be deduced from ordinary convexity by some transformations. But
we give here direet proofs.

2. A hierarchy of p-convexity of segquenees

For a real sequence z = (z,);50 wo consider the p-differences (of
order two) detined by : '

Cpl @) = @ypn — 2p - @y Ppray.
The sequence w2 is called p-eonvexib e, (z) > 0, V74> 0. This is a genera-
lization of the eonvexity which corresponds to » = 1, In [3] we have
also defined generalizations of starchapedness and of superadditiv ity : the,
sequence a 1s said to be p-starshaped if
) e B (+2 4 £ $
thy L&) = (/P — 20) /(1 + 2) —

2)/(i +1)> 0, ¥i >0

- PR
— (7 /1
or p-superadditive if :
Upif(@) = @y — Py — pla, + P e, >0, Yiiz o0,

We shall denote by 1y, S5 and &, the sets of p-conve: , p-starshap-
ed respectively p-superadditive sequences, Let us consider also the set
cl weakly p-superadditive sequences :

Wo ={o; alz) >0, Viz 0}

The first form of the hierarehy of p-convexity is represented by the
following chain of irclusions :

(1) K,c8 <8, c W,
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We don’t prove it now because we shall give stronger results
follows.

3. A measure of n-convexity ,
] 3 = (i olowin
As we have done in [5] for the case p =1, we define the £ g

measures : _
(a) of p-convexity, by :

kpu(®) = min {e,;2)/p"*% 0< i< n — 2}
(b) of p-starshapedness, by :
sE(a) = min {2 - dpy(x), 0< i<W — 21
(¢) of p-superadditivity, Dy : b
8$pu(@) = min {apg(@)[igp™t!, 0 <4, j, 1+ J< M
(d) of weakly p-superadditivity, by :
W) = min {ay(@)fip'™t, 0<<i< n}.

TMMA 1. (8) If the sequence x is represenied by :

* w= ¥ (0§ + p=by

j=o

then : : i 2< 1< .
kpo(@) = min {b;/p’, 2< %<

(L) If x is given by :

(3) @ = 1p? E b; — (¢ — 1)pib,

then : .
s¥,(®) = min {2b;, 2 <1< n}

(¢) If x is given by : _

(4) 2y = Y, by + ipty — (i — 1p'hy

i=2

then : = .
Wo(@) = min {by /ip™, 1< i< 0}

Proof. From (2) we have :
Cp(@) = by

3):
Bromity dpi(w) = by

and from (4) also :
pir(2) = biyy.

have :
TEMMA 2. For every sequence , every p >0 and n> 2, we

(5) Ko ) < 53a(#) < 8pn(@) < Wpa()-
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Proof. Every sequence g may be represented by (2) and so, for
1<n—2;

1 i+2 1. b; Epu() i+2
dp(@) = ()Y 5 Emle —1)
CTarner s A Ty e A Y

which gives the first part of (5)
sented by (3) and so :

i+i ] Jj+i '
o) =pf+f[z‘ Y btiy bk}wf“ﬁszn(w)

hir1 k=71

. But the sequence may Dbe also repre-

which gives the second inequality from (
Remark 1. The defined measures
following classes of sequences :

5). The last one is obvious
permit the consideration of the

Koo = {x; kpw)> a}
Sa;(m = {*7/'; S;’;n(m) > ((,}
Bpan = {2 spu(2) > al

Wown = {25 wpu(z) > al.

If the corresponding conditions are fulfilled for any # we renounce
at this index getting the sets : K ,,, 832y Speand W,,. For a = 0 we find

also the sets from (1). But from Lemma 2 we have the following genera-
lization of (1).

THEOREM 1. For ever
inclusions :

(6) I(-:Dan < S;‘an < Span < 1172)(”1-
Remark. 2. Let us congider al

Yy P>0,n>2 and a real, hold the Sollowing

so the following classes of sequences
Ky = {2; epfx) =0, Vi 0l
S = {a; dp(x) =0, Vi 0} )
Sy =1{@; apis(@) =0, Vi, j> 0} )
Wo = {#; ayu(z) = 0, viz 0}
Zy ={z;3a,beR, o, = p (ai 4- b), Yi> 0},
From Lemma 1 we deduce that X > =80 =Z,. Also %, < Sp = WS
and from :
Opi( @) = tp 441,1(w) — P ayia(@)
we deduce W) < K9, thus :
Ky = 8 = 8% = WY — Zy.
4. Invariant transformations

In [57 are indicated all the weight sequences g — (@)s»0 Which define.

a transformation 7', of sequences by 7', (x) = (X3)ino, where :

(7) Xy = (agmy + ... + ww)f(ag + ... 4 ;)
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with the property that it preserves the classes If, SE, Spor Wy In [2]
and [6] one can found characterizations of such transformations (even of
more general type) which preserves the p-convexity, but no example is
known. One reason may be that there is no transformation of type (7).

A more general transformation may be given by a triangular
matrix A = (ay)<j<i putting 24(x) = ()0 where : e

Xy = gy -+ - - T ue

LeMMA 3. If the transformation T4 preserves one of the sets K,
8%, 8, or W, then it preserves also the set Z,.

Proof. It, for example, 7', preserves I, then for every » € Zp < I,
we have : ' :

el Talt @) = 4 O Tul@)) > 0, ¥ iz 0

that is Ty(z) € Ky = Z.

Liaisia 4. If the transformation 1o given by T(2) = (X))i»0,
where :

) (8 4 1)

Xy = (ayey + Gty + - -

preserves the set Z, then: a; = Pt
Proof. T8 T (%Z.) < &, there arce the real numbers 4, B, ¢ and D
f @ D ) I ?

such that :

(8) it 4 o A app = (1 4 1}pAi + B)
and ;
(9) agpt - ap e = (i 4- Dp'(Ci + D).

Tor 1 = 0 and 7 = 1 it follows :
A = yf2, B=0, ¢ ={(a —ap)f2p, D=0
and for ¢ = 2
a4, = GyP, @y = GyP°.
Subtracting (8) frow (9) we get :

a; = apii — 1)+ aptiE — 2 F g agft + 1) — 2'/2

which gives, by mathewmatical induction : a; = ot
This result suggests to consider a more peneral case.
TamorsM 2. If the lransformation 1. given by To(w) == (X)isn,
with
k X i -1 1 / o 3
(10} A = (agpey 4= @ p! o+ oo+ oam)flag + - - @)
preserves the set %, then ihereds a v > 0 such that :
v 44 —1 o
a.l-:alo{ +_ , Yi 20
v

Lo UTRST U AU UISCAY K i) 1
(0\ (1) @'('i—l ’

(11)

where :
1.

WV

5
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Proof. We must find the numbers 4 and B such that :

Then 4 = 2 gives :

ty = ty(ay + a,)/2a,

i—1
@ = Y, (i — k(o + 1))ayfi
k=0 A EY .

induetion and the relation :

A7)0

Remark 3. Taking in (10) a; as given by (11), it becomes :
(18)yms { [ Yz—yv'—i(“”_l ' D&l &)
ot A=Ay = i s V
i v 1 G

12 it fj— ' ; ' aud : |
(1 )t (e Dacdh 4 e a)pt = (a4 . w)(di '+ Blpt
o o e 0 s ] 4 3 ¥ . -
or ¢+ =0 we have B =.0 and for ¢ =1 we get also 4 — ay /(e -+ ;)

and putting «; = v, .qy we have (11) for ¢ < 2. From, (12).we deduce ;

which gives relati ' eVery ¢ i .
gives relation (11) for ey ery +. For this one used the mathematical

Writing X° —= (X7?),.0 =
g (A)is0 = Ay(z) we can.consider the following measures

(in v-mean) of sequences ;

e () — I v v 5% \
Lzm(a') ]"pn(*l )7 S;Jkn(“) - 8;';12();0)‘, S;n(a;) = Spn<Xl)’w;n(m) = u}pn(—XU)-

THEOREN, i ‘
REM 3. For any sequence & = (2)is0 and any 0 < v < we have

the following relations :

flf) U (@) S (L 2/l @) < (1 2J0)lba(a) £ shi(a)p?
15) s s )
it sha(@) < .(1 +.2/u)8m(w) < (1 - 2/v)sfi(x)
ao) Wyl @) < (1 + 2fuhwt(@) < (L + 2/o)ot(a).
| Proof. (i) Let @ be given by (2) and X* by :
| (17) S X = .230 (i —Jj+ L=y, ix o0,
s

Then from (13) we have algo :

(18) g, Wt 4, T E L o
N i =P ” Xy, = 7go(m(l + 1/u) — j +i1)pe-Tpy
and o : ‘
| 10 '
-y (@) = biyp == (L + (3 + 2)u)dt, — ipht,afu.
This gives, step by step :
bt i1/ . ;
— = . .‘IQ‘—FMZ‘](@_Z)“'(]*l).b_f_
VA A =2 (U A1) o (u g p!

=y
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thus, for + < n:

,):L i (1’ ) g (? T 1) k be
PHE g (u | o g ujg'z (w4 1) . -(% + 7')) T

f w ] w(s — 2)! Lfuw+5 -1 o (a) — —%
_(u—{—i+(u—1—@). (v + 2) g( j—2 ),,,,(a) w42 (@)

and hence, by Lemma 1, we have the first inequality from (14).
(i) Taking (17) for » and u, (19) gives :

i+ 2 P T " .,
(1 + 50 o =Py = (14 22 ) pia = Lo

U

and so, by mathematical induction :
bivs _ v(u + ¢+ 2) b
P o it 2) p
Hence, for i < n — 2 '

e 0 (quH—2

) gy 27 irl v...(j —1) bu
hlegely & 2).- (o) e

b S (7)) e =

P wlo+it+2  (d it (o) Sl j—2
o 2)/1;"(60)
u(v—{— 2)

thus obtaining the second inequality from (14).
(iii) Taking v instead of % in-(18), we have for ¢ <

no:
Qo @) — (1[0)(BLeafp**) + (z j - D ) / (G + 1) + 2)).
Hence : e

a,(o)/p? > (1/1’ SN G — L

i=2

1)+ >>) k() = (Lfo -+ 1/2)k%n(@)

that is the last inequality from (14).
(iv) If o is given by (3), then (13) gives :

. ur Sy w+\\ S (uti— 12 )
Atlpt = by — [ by — by 1
T A ( /( ))5( j—2 ) ' (u+1
thus : B
U U w43 —1
Q) = —200a2 ( )bf
ot rmprm Al

1
and so, for i< n — 2

‘ vy W =l gy IA— v,
20, X) > (@—@Q +—t Jﬂ & )’};( )) i) s (0

(1H—2

which gives the first 1uequahty from (15).
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(v) Let X™ be given as in (3) by :

(20) X¥ = pt Y o — (@ — 1)pibg.
i=t
Then as in (18) we have :

@ipt = i1 4 i/u)b® + 1/u) Z bf + (1 — (1 + 1/u))b
and so :
o @) [P = (1 - 2)(1 + (5 + Du)br — i(L4(2i + 8)/w)b?, | + (i —1) )bi /.
Taking it for 0 < » < u, we got, :
(0 + 2)A + (€ + 2)/u)bt,. — WL - (20 + 2)/u)d! + #(f — 1)b¥/u =
= (14 2)A + (4 + 2)/0)bl,, — ?(1 + (20 + 3) /%‘ /Jm + T — )b /v

thus, by mathematical induction :

v o(w - 7 4 2) o i AN A S !
bivy = ——— "L pr iyt i1 )
wWo + 7 + 2) s @)’tt sz(v+i+2) (w——])b

which gives as in (ii) the second inequality from (15),
(vi) If z is given by (4) and X¥ by :

1Lu Z pi jl);’ _I_ zp’"' ny (t 2~ 1)1)"})‘

we have as in (18) :

i e I
= (1 —|—-~~)b§’ + Y bipii + p‘—li(l + i) vl —ifi o L bipt
u = U % ’

LY
and so, so for ¢ > 1 :
(21) Opia(@) = by = (L 4 (i ++ 1) /u)by,, — (piju)by
and
(@) = by = (L 4 2/u)b2,
By mathematical induction it follows that :

L ST (e VRN A b
w41 =2 (w4 4) .. (w4 §) i

thus, using Lemma 1 :
by % b,

_ LB u"*‘ (t—2)...G —1) by
(0 —1pt w i —1)p

2 (w0 (w ) (5 — L)pt g

o w(i — 2)! w4 — 1
> 2l ) %
(’“ +i (w9 (u+ 2) y ( j—29 )) Wou(#) = w—+ pru(w)
which gives the firsg inequality from (16).
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(vii) Taking (20) for w and v, we have from: (2 )i g w2 F el e

(L (0 4+ D))bis — (pifu)bl = (1 (i + 1)j0)b?,, — (pifo)bi, > 2
and s ' :

v(w - 2) ..
w(v -+ 2) :

So, step by step, we get for 1 < %3

)

by =

ou — ) =l (4 —1) e jptr?

b = b 2T Y - — by
(v |- i) w2 i) (o)
or, using again Lemn’m_l H : i '. |
Zﬂ-’ \' : ”,(Q,L + 1) b;‘ n (1 — 4>j E} (j.—_ 2). . .(j=1) by .
(G —1p* w(v10) (& — L)pt v o). (04 4) (F —1)p!
(i v(u—o)(i—2) =l fo4-j 1Y) - o(u 4 2)
;(u_((ei; T u<¢z>>+z'>li)f -</v+)2'>' Ez( iis )) Wl i(u%ré)l i

getting the last inequality from (16).

Remark 4. Let us denote by MK .., MYS¥any M°S,., and MW e
the sets of sequences  with the property that the scquence X*® given
by (13) belongs to I,,,, Sy Spany 'WW_,,,J.nspect.iwl;yr. For @ =0 and =
unbounded, we denote them by MK py M85, MUS,, MW, vespectively.
From Theorem 3 we have the following :

COROLLARY 1. For every p> 0, 0 < v < U, = 2 and a real, we have
the following tnclusions

Kopunc MK poriyn < MK poasonm
n

Jek % Q% 170 Qs )
‘\Sz),afﬂ,n =374 papry )y, n & M S;;,apzf(v),n

N |
Y y J y
Spaps,n lwubp,apﬂf(u),n l’”vSw,am”f(v),n
N n n

T M e . - At g
Wp,ape,nc M WZ?.(LIﬂf(?l),?LC MW XK

where f(u) = w/(u - 2).
COROLLARY 2. For every p > 0 and 0 < v<<w we have the nclusgions :

Ky« MK, ¢ MK, « 8§ « M"S§ < M°S3
n N n
8, M8, WS,
n n L
W, c M*W,c MW,

Liemark 5. Among these sets other inelusions may also exist. For
example in [4] it is proved that for p=1 and y=1 (which corresponds
to the arithmetic mean) : j

Ky c MK, =« 8 = 8; « M'Sf B,
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