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1. Introduction

In this paper we consider a nonlinear programming problem with
symmetricaly differentiable pseudo-concave objective funetion and con-
vex constramt set. For this problem Minch [5] gave optimality conditions
of Kuhn-Tucker type and some duality properties.

Here we present an extension of Kortanek-Evans [2] optimality
conditions to symmetric psendo-coneave programming. Also we give some
applications of this result to symmetric psendo-monotonic programming
with generally nonconvex constraint set, In particular, the linearization
methoed, presented in [6] for the ordinary pseudomonotonic programming,
will be extended to the symmetric pseudomonotonic Programming,

2. Definitions and preliminaries

In this section we will briefly summarize some basic definitions and
properties of symmetrically differentiable functions. Beyond this, some
results concerning the so-called symimetrie pseudo and quasi-coneave (con-
vex) funetions are considered. These classes of functions are generally
nonlinear noneoncave and nondifferentiable. For further details we refer
to Minch [5]. Various properties of the usual pseudo and quasi-coneave-
(or pseudo and quasi-convex) differentiable functions have been presented
by Mangasarian [3], Martos [4], among others.

First we recall that for a real function 1 of one real variable, the
symmetric derivative of f at » is defined as :

f2) =lim (flw + b) — flo — h))/2h,
h—0
provided this limit exists (see, e.g. [5]).

This idea was extended by Minch [5] to functions of several va-
riables,

Definition 2.1 ([5]) Let 2 be an element in an open domain A in
Brandlet f: A — R. Tt there exists a linear operator f*(x) from R" to R,
called the symmetric derivative of f at @, such that for sufficiently small
hin R» :

No 4 k) — fla — b) = 2f (@)h - u(z, b) | 1.
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where u(z, b) is in Rand u(x, k) — 0as| k| — 0, then fis gaid to be symmnie-
trically differentiable at @ I f has a symmetric derivative at each
point x in A4, then f is symmetrically differentiable on A.
The mnotions of symmetric gradient and symmelric derivative are
analogous to -those of ordinary gradient and directional derivative, For
convenience we shall denote the symmetric gradient of a H},‘ll'll‘ntf-t-l'lc.&ll_\"
differentiable function | at x by [ (w). ;
Minch [5] shows that f is symmetrically differentiable at z in A4,
then the symmetric oradient is of the form :
3x) = (D°f(#; ), ..., Dfles e,
.., e is the natural bagis for B* and Df(ary h) denote the sym-
ffat o (inAd) m the diveetion kb (in R*), that s :
g C f(p 4 th) — fw —th)
Diflay ) = hm'i(——r —)——[ _,_—)
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where ¢, .
metric derivative o

Next, we need the following quasi-mean value property of the sym-

metrically differentiable functions. |

ProrosrrioN 2.1. (Minch |5]) Let f be a continuous and symmetrically
differentiable function in @ neighbourhood N(z) of a point.2 an 4. Then,
for any poinls x,y in N(z) there ewist two points &' wnd 2" contained 10
the open segment joining o and ¥, such thael :

(2.1) Pl @ — g) < flz) — fly) < fle)s = y)-

Ag an obvious conseqguence of Proposition 2.1, we have :
PROPOSITION 2.2 Let g be @ real continuous symmetrically differentia-
ble function on aw opemn interval T. If ¢*(z) = 0, for all @ in I, then g 18
constant on’ 1. ’

Proof. The conclusion can

The following definition generaiizes

Definition 2.2. (Minch [5]) Let B be a subset of A and ' a point
in A. The function f is seid to he symmetrically pseudo-conves o s-pseudo-
conven at ' (wilh respect to B)if fis symmetrically differentiable ai z' and

for all oz in .

Pe easily obtained from inequalities (2.1).
the ]’)Ht!-‘ﬁd(k(:uﬂ\-’t‘:\‘113.\" conecept.,

fs(a'Ww —a) =0 implies f.(o:'r) > fla').

The function [ is s-pseudo-convex o A d4f it is s-psewdo-convey at each
point of A. The function [ s s-pseudo-concave if -f i8 §-psendo-conves.

Analogous to the ordmary notion of differentiable quasi-convexity
one can consider the notion of symmetrically (uasi-convex function.

Definition 2.3. (Mineh [5]) Let B he a subset of A and @' a painb
in 4. The funetion f i said to be gyminetrically ‘guasi-convex or g-guasi-
convex at @' (with respect to B) if f is symuinetrically differentiable at
2 and forall o in B, '

(@) < f(a') implies that e (e — a) < 0.

The function f is s-quasi-convex ol A if it is s-quasi-convex ab each
point of A. Also the. function f is s-quasi-concave it:-f 18 s-quasi-Convex.

Symmetric P, y
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i) ‘3‘:9*17,’ 1t awill be agsumed that s-

xity) at a pojng.is with. x

unless otherwise stated
Definition 2.4 (Mineh [57) Tet :

_ Définition 2.4 (Minch [57) Let B e o
pointin A, The function F ix et st B be a subset of A ¢ ‘,
tonie) at 4’ (“,i_l;]?']i‘if_?_‘;él { 11‘: said to be .'r'-_])S(‘-'L[d(}i,llt-Jl'l.(ﬂ]Ul!l.iI(“j! ?;Er]‘f;t & be.a
and Dhoth 3-llﬁvﬁtih~_t;('}:lij\(:0t Uaxg%u is symmetrically .(li'fflzltenil;ifilrllgl?l(;l]0:’
s-(uasi-concave). el s-pseudo-eoneaye (S-'qlla.r{ilt;ul.lti'.of\"‘ a,libd

L;I]IGL, 11 j ]].r].ﬂ an | I. al'y I_“ 1 (‘.ill\ (]1 1) 1 Ill'“ IIdS a SYImm ‘ll 16
O1rcnarY C X E 3
aoan ld. 1;110 are (614 IJ‘dl t}]p ’,01 owingy o -}({1' Y ] [8) 1s 1 p

].J ’uGPO-'}' ITION ‘.—d: 3 1 l Senl- e I?f’"{i - Ca l LN i
§-m "Hdﬂ ALY \ 2 o4 ?S :p e ad I-COHD P )Hv J ‘ S
I Seal conves (-’)"PS{'?“‘U ('(}'ﬁl"ﬂ-'bl.-). " 1 o {[ ! LG~ CONC Il/()') /()7 b (2

(ii) If f s differenti ;
el 1.0 18 dafferentiable quasi-convex
¢o .'-'-'i-f*:i(?. _(s~guas-a-cow cave). ? e
i) If f is pser ¢ (¢
_ sendo-monotonic (diff ; »
g (0 Iy : lonic (differe ; ;
18§ j!ﬁi{t!{-(_io—muw-oiu-m.u (.sr-mms{mmonotognc"f)f Fhisable S L
i 18 easy to see that :
5y . the ¢ sserti o Statel
| lmpqhgmon Y i eg, Mg converse assertions of those stated in
Nexl; 7 SRV : . | I
and %ext we give some useful
and ])is)eudo—convex functions
ROPOSITION 2.4, Tet f be
. : A Let fhe a sy Lol ffe
FunctionEE et f ymmetrically differentiable e ’
e e f [ is an S-quasi-conver, function on « WAy
la)l s o S s : won on a convex subset B of A
roof. Let 2', 2 be tw i i 7
j(”t st 2’y 2" be two points in B such that flx") < fle") and let
(1) = f( 2 H ' .y 2 8,
9(t) = f(a(1), @(t) =12’ - (1 — ta'’, for all ¢ in- {0, 1]

Supposq there exists ¢ in (0,1) such that :

| 9(t"). > ¢(0) = fla").
Since g is a continuous funct

S 1rhg)v.s'({qfc_l();—p_onv.e}':ity-(or s-quasi-conve-
/ cfinition domain -of the! tisnction

(quusi-conoave) then fsi-quasi-

yoperti f the. syr i
pbroperties of the symietrically quasi

it oed 8 aomi ion, there exists an open interval 7’
ger inLe.r'\-‘:‘H %ili?ni' 1‘;“1111:1 ]g.(f') >Lj(ﬂ?”); for any ¢ in I '.1 Letm;ei)vealtl{eb?;l?
S : ¢ this property. Denote by ¢ = suy om the
Thcz-nforlf ’(’J’I d(,r on ][0, 1] it results that the jl’ltervalpllis ]?Ll;t oyt
y 1 don’t belong to 7, which means that : =it it

(2.2) gy < fla”).

()ll L e 01/] Y ll( ¥ Stan Ner n n
0

L. Thus, for any ¢ in [ ]
i, for anm L, we have f(a’ i f(x'
by definition 2.3 of 3,-quasi—convefx('it})',<itf§,’(m){f())?\\in'd Hijlsla(i) g Thon,

0> (2" —a(t) f(a(1) =0 — (2" — ") falt)

and
o0 2 —alh) el = — el —a") Flatt)
Therefore, for any ¢ in 1, we have : |
g°(@) = (&' —-a")f*(a(t)) =0
@nd, by proposition 2.2, it results that
for any ¢ in /. Then, it follows :

(2.3) Lim g(t) = ¢ > f(a').

11’

)

g is coustant on 1, ie., ¢(t) = ¢
?
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But (2.2) and (2.3) shows that ¢ is not a continuous function on
[0,1], which contradicts the assumptions. This ends the proof.

ProrosITION 2.5 If f is s-psewdo-convex and continuous on ¢ convex
subset B of A, then f is quasi-convex on B.

Proof. Let &, «'" be two points in B sucht that f(z') < f(#”). Sup-
pose there exists «* in the interval (#', ') such that f(z*) > f(a""). Then
since f is eontinuous there exists

.’)30 ur t'a;" Ji_ (1 . t/)w//’ 0 < f:, = 1,

r?

such that
J(a%) = max {f(z) |@e [, & T
Therefore, by s-pseudo-convexity of f, because f(x) < f(2?) it follows
that
(2" — a%)f*(a®) < 0,
s0, we have

(2.4) (1 — )z — 2") f*(a®) < 0.
Also, the inequality f(x') < f(«°) implies that
(2.5) (" — 2% fi(a®) = — V(&' — ") f3(a%) < 0.

But (2.4) contradicts (2.5). Therefore f is quasiconvex on B.

3. The extension of Kortanck-Evans optimality conditions

Let f be an arbitrary objective function defined on the open subset
A of B*andlet X be a convex nonempty subset of 4. Then we consider
the maximization problem :

P.max {fla)]| v e X}.
As it is done, e.g. by Kortanek and Evans [2], we will relate

problem P, under the assumption of symmetric differentiability of f,
to a linear approximation at a point @’ in X of that problem, namely :

P(2). max {ff(z")»] v e X}.

The following result represents an extension of the similar property
given by Kortanek and Evans [2] for p sendo-coneave programming.
TaroreM 3.1. Let [ be o s-pseudo-concave and continuwous function.
Then @' in X is optimal for P if and only tf ' is optimal for P(w').
Proof. First let 2’ be optimal for P. Then f(z') > f(x) for all ze X,
which by s-pseudo-concavity of f (see, definition 2.2) implies :
(e = (&), for all z € X.

This shows that &' is optimal for P(z’).

Conversely, let 2’ be optimal for P(z'), ie., there is mo ' in X
such that :
(3.1) oo > fi(x")a'.

r b

)1
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p Then, by definition 2.2, we conclude that there it no #'" in X such
hat

(3.2) fa”) > fla’).
Otherwise, from (3.2) by definition 2.2, it follows that
Pla)a” — &) >0,
which contradicts the optimality of " for P(a').

THEOREM 3.2 Let | be s-quasi-convex and continuwous on X and f(x’)
a nonzero vector. If w' is optimal for P(x’) then &' is optimal for P.
Proof. Let &'’ be a point in X, Rirst we consider that :
(" — 2")f (") > 0.
This i lies fla”) > f(a"), for otherwise if f(a”) < f(«), then by
s-quasiconvexity it follows that :
(")) filart) e 0}

whieh is-2 contradiction.
Now, we consider the second case when :

(" — @) (a") = 0.
Asgsume that flz'") < f(2'). Thep, by the continuity of f, the point
z'' is in the interior of the convex set :
B = {ze X|f(a)< f&).
The convexity of the set B’ follows from proposition 2.4.
Now by s-quasi-convexity of f it results that :
(¢ — ') f*(x') € 0, whenever z is in B’

Therefore, (z — &)f*(x’) = 0, is a supporting hyperplane for B’. But
since (2! — a')f*(»') = 0 at the interior point '’ of B’, this means that
this supporting hyperplane separates points of B’, which is impossible,
Thus f(z"') > f(a’) in the second case. Hence, z’ is optimal for P.

Now, we present a converse result of Theorem 3.2 with some addi-
tional assumptions.

THEOREM 3.3. Let [ be s-quasi-monotonic and continuous on X and
let fi(2') & monzero vector. Then x' 18 optimal for P if and only if 2’ is
optimal for P(x’).

Proof. Suppose z’ is optimal for P and 2’ is not optimal for P(x’).
This implies that there is " in X such that :

Pl > f(a)a",
But, since f is s-quasi-concave, the inequality :
a2 — &) < 0 implies f(a') < f(a'),

which contradicts the fact that 2’ is optimal for P.
The second part of the theorem follows by theorem 3.2.
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The theorems 3.1 —3.3 suggest that maximizing an s-pseudo-imonoto-
nic or an s-quasi-monotonic function on a convex set X is equivalent
to maximizing certain linear functions on A,

4. The ease of nonconvex constraint set Lo

Now, in the problem P we will consider that the constraint seb
X is a closed bounded (generally nonconvex) subset of the convex set
A of R e ageyin S

We associate to P the following optimization problem with' convex
feasible set : : ' '
P1. Find 8 = max {f(a)| & € co(X)},

where co(X) denotes the convex hull of the set X.

Let 8 be the optimal value of problem P. \We have the following
result. ' T | g esale ,

TUROREM 4.1. If f 48 an s-quasi-convex (or s-pséudo-convex) and con-
tinuous function on the convex set A and X is a closed bounded nonempty
subset of A, then 8 = 8. Moreover, &' in X 1s an optimal solution of P
if and only if it is an optimal solution of PI. S e

Proof. The theorem is an obviously consequence of proposition 2.3
(or 2.4) and of Theorem 1 in [6].

Now we will derive an optimally condition for P in the case of
nonconvex. constraint set. Wi \

THEOREM 4.2 Suppose the assumptions of theorem 4.1 hold. Assume in
addition thatl either one of the conditions is verified :

(i) f 18 s-pseudo-concave on A ;

(ii) f is s-quasi-concave on A and f'(x') is @ nowzero veclor for a
certain point 2" in X. e en

Then ' is optimal for P if and only if it is optimal for the optimiza-
tion problem with linearized objective function P(x').

Proof. By theorem 4.1, @' in X is an optimal solution for P if and
only if it is an optimal solution for PI. From theorems 3.1 or 3.2, ' 18
optimal for P1 if and only if it is optimal for the linearized problem :

P1(z)). max{f(z")x| x € co(X)}.
But theorem 4.1 implies again that &’ is optimal for P1(z’) if and
only if ' is optimal for P(z'). phenbmfe Fidi
Theorem 4.2 below follows directly from s-quasiconvexity definition.
TurorEM 4.3 If f 18 an s-quasi-convex continuous function on the
convex-set A and if x', &' are two elements of A such that :
(41) flane” < [(a")a",
then fla'y < f(x'').
We mention that a version of this theorem was used in [6].

5. Lincarization procedure

Theorems 4.1 and 4.2 suggest that mmaximizing an s-quasimonotonic
function on a closed bounded set X is equivalent to maximizing-certain
linear funections on X. ST

.
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The algorithm below envisages to find a sequence:of points in D
converging (finitely or infinitely) to a point z’in D for which Theorem 3.3
holds. This is done by solving certain linearized maximization problems.

Linearization algorithm

Step 1. Choose 2% € X and take ¢ = 0.
Step 2. Solve the linearized maximization problem :

P(zt). Find
(5.1) §; = max {f*(a) v:re Y},

Let 27" bhe the optimal zolution of P(x!).

Step 2. (1) It fo(a)a? < s, then go to Step 2 with (¢ + 1) instead
of 1.

(ii) It fo(at)at ='s; then stop. By Theorem 3.3, »f is an optimal
solution: for P.

6. Convergenee properties

We will state a general convergence property (Theorem 6.2 below)
for the linearization algorithm. After that, we will give sufficient con-
ditions for finite convergence of this algorithm.

THEOREM 6.1 Let f be an s-quastmonotonic and continuous function.
Then wherever condition (1) of Step 3 holds, we have f(xt*Y) > flat).

Proof. From condition (i) of Step 3, one gets :

Fayrt > faat,

whence, by Theorem 4.2, it follows f(a'*) > f(2).
We present now a general convergence property, which in the infi-
nite case, was given by Tigan [6] (theorem 6).

Trroredy 6.2 Let f be an s-quasimonotonic continuous function ve-
rifying at least one of the condilions («) or (b) from Theorem 4.1, and let X
be a closed bounded set. Then one of the following siluations holds :

(1) If condition (4i) from Step 3 is fulfilled for some 1, then liveariza-
tion algorithm siops «fter « findte number of iterations and w* s wn oplimal
solution for problem P.

(ii) Jf comdition (1t) from Step 3 did not hold for any 7, and moreover
515 a continuous function (i.e. f 18 continuously differentiable), then every
Limit point o' of the sequence (x') i8 an optimal solution of the problem P
and :

flz'y = lim f(s') = max {f(2): e A}.
100

Proof. The proof is similar to that of Theorem 6 from [6].

In the finite case we have the following result.

THEOREM 6.3 Let f a be an s-quasimonotonic and continuous function
verifying at least one of the conditions (a) or (b) from Theorem 4.1 and let
X be a closed bounded set. Assume «lso there exists « finite set X' < X,
such that :

v - K o g 4
(6.1) max {f(x): xe X} = max {f(x):xe X'},
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If «'e X', whenever condition (i) from Step 3 holds, then the linearization
algorithm stops after a finite nwmber of iterations.

Proof. Since by Theorem 6.1, the sequence (f(a')) is strietly increa-
sing, it follows that in sequence (#") thiere do not exist two identical
clements, Hence, the set X’ being finite, after a finite number of itera-
tions condition (ii) from Step 3 is fulfilled. Thus by Theorem 6.2, the
algorithm stops after a finite number of iteralions.

We mention that a polyhedral convex set is an example of feasi-
ble set X, verifying, condition (6.1) from Theorem 6.3. In this case,
since f is an s-quasimonotonic function, the finite set X', where the fune-
tion f reaches its maximum over X, is the set of all, extremal points of X.

7. Coneclusions

Finally, we note that some of Weber’s results [8] concerning the
linearization techniques for finding efficient solutions of psendo-monotonic
multiobjective programming with linear constraints can be extended to
the symmetrically pseudo-monotonic case.

Algo, we think that Minch’s duality results for s-pseudo-convex pro-
gramining can be used to obtain some duality properties for s-pseudo-mono-
tonic programming with generalized linear constraints (see, [7]for duality
of ordinary pseudo-monotonic programming with generalized linear con-
straints).
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