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APPLICATION OF THE RITZ VARIATIONAL METHOD
FOR THE PROBLEM OF HEAT CONDUCTION THROUGH
NON-CONVEX THICK PLATIS
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1. Formulation of boundary problem in the ease of heat (ransfer
in a homogeneous and isotropic plate of thickness %

We assume that a plato, that has the average section in the Owxy
plane and the faces in the planes 2 = -+ h/2, bounded by the contour T,
is heated (or cooled). For example, an ambient fiuid around the plate is
hoated to the temperatures 6, on I', 6, on 2z = h/2 and 0, on 2 = — h/2.
The temperature T(z, y, 2) of the plate, that takes up the domain Q®,
. satisfios the eguation

(L.1) AT (ay,2) = 0, (x,7,2) € Q2
and the boundary conditions of the third-kind
. o 2T
1.2) x ;i + o Ty — 0) =0 on T
it . )/
(1.3) AL L, Moy =0 on (8): 4=N
oz 2
1.9 )\01— w1y — 0) =0 on (8,): 2 = LS
a2 2

where \ is the thermal conductivity, « is the coefficiont of the _(;\-ng‘r;@ctive
heat exchange with the outer: fluid, T, T, T aro-the" téniperatures of
I, §;, 8§, The'unknown functions are Wi

T = T(x,y,2) in O T, = T(x,y,2) on I,
ot ' h 1 h
1y =1 (977?/75‘), 12:1’(.’17,3/,—*2*)

By determining these funetions, the problem of heat conduction through
the plate is solved : the distribution of temperatures:in the plate and the
calculation of heat transfor within the plate, on the faces S,, §, and
boundary I'.

(@) Reduction to two-dimensional problems. The Helmholtz equation.
1t is assumed that the temperature in the plato varies linearly with res-
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pect to its thickness, according to the relation (3], [4]
T(z, ¥y, z) = (@, y) -+ l@yy) 2

uneti ish their equa-
are unknown funetions. We further est';ab.hsh t 4u
mrzluil ) is? multiplied by 2? and then is integrated with

(1.5)

where =, and 7
tions. To do- this,

v I h :
respect to zon(—g,g). gy
= gt dxt + 2*[9y*):

If p = 0, we obtaii the equation (
hj2 - B el
B L aT nf2 .
dz -} =0 or
A T, 9, e ( 32)4;/2
—nj2
T By Ty A Ty — By — 0 = 0:.(0 e

where (1.5) is taken into account: The p1'09€d1‘11’¢ is thp kamefmp = 1,
and we obtain 1oy : :
pm— SR op gy D0 0) = 0
; o "‘:"']LS"" ]

The calculations above justify the follo_\_-vil?g. expressions

hi2
/2 J LA Y | Ay o I
oo it o g fiend
1 1 Ads. (g y) = — e, vy, 2)2 dz
(1.6) =yl y) = }— S T(z, v, '°>d"47 '1(“;9 Y) 03 (x, ¥, 2)
i 2 i - —'11/2.
) e . h,apd o :—_——kh m (]5), one gets,
On the other hand, by putting 2 T R i T

1 .

‘ L T,). & a = — (T = 1y
(.7) Toz'g':(ﬂl_%‘ lz)-andl_ 1 h‘-( 1 2
nted by the following

Q® is represe y th ¥
he plate 15 repre ¢ Heltuholtz type in

: heat eonduction in ti is re]
fhird-ql;ihn?d-:bounda:ry value problems for equations o

two-dimensional form

g ] ‘614702)':0‘111(2
Ay @ An -2 (no

%04 (e, — 0) =0 on I(=09Q)

(1.8a) - |
gt w wg(ol 2 ¢ a6 — 02)]; o} Mty

(1.9), (FD) = Az =i l L g

(1.92) | g sy noms B

omn
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. (b) Operatorial formulation, By using

’ 2 : R o
for (I): w(wpy) = vo(@,y) — 65, q-=2 %’ f== _‘_7( 0y — — ! T 2)

h I 2
(1.10) L | __
: 6(ch 4 2 6o(0, — 0,
Tor (1) : w(@, y) = (@, y), ¢ = *(G«h;‘:), Lo TR !,

these problems are reduced to the following Newton boundary. value
problem for the Helmholtz equation with respect to u = ulax,y) :

(1.11) - L = — Aw-- qu = fla, y), (2,y) €
(1.11a) g—“ + ou =0, (xy)e oQ
n

The Hilbert fundamental space it introduced 'H(Q) = L,(Q) and
we reduce (1.11) to an operatorial equation of the form 1], 2]

(1.12) Au =f, fell = L,(Q)

where the linear differential operator 4 : D(A) < Ly(Q) — Ly(Q) is defined
by the domain of definition .D(4) and the expression Aaw. These are.chosen
as follows s il . e

o

(1.13) D(4) = {u e C¥Q) n OYQ) | Au e Ly(Q), p.3 + ou :0 }
i

(1.13%) . Au = — Au -+ qu

The properties of operator A. Let us have the arbitrary functions
1,0 € D(A)  Ly(Q), Aue Ly(Q). The scalar product in L,(Q) for these
functions leads to the following expression (provided Green’s fornmla is
also used)

(1.14) (Aw, ©)r, = a(u, v) + Ty(u, v), u,ve D(A)

where the integral bilinear functional a(1, v) and the boundary term 7
have the expressions

(1.15) a(u,v) :S S(Vu- Vo + quo)da dy
Q .
(1.16) Tup) = —S@f@ ds — Sim} ds
on A
(1% 0Q

Prorosrion 1.1. The operator A :D(A) c Ly(Q) — L,(Q). has the
Jollowing properties : ‘ ' .

1°. The operator A s linear and. D(A) is a dense linear: subspace in
Ly(Q). Indeed, since the test space OP(Q) « D(A) and OP(Q) 1s dense in
Tiy(£2), [2], 18 resulls that D{A) is dense in Ly(Q). §
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. ) . . 1
9°. The operator A s syminelrieal on D(A): (Au, o)z, = (%, Av),. &
esulls easily from (1.14) _ . L
Msryu%“ T}'z,]e ’};pémior A is positive definiie on D(A) [(Au, w1, > (%) L,y
v =>0]if
({117)] (2) q>0,a >0 or (b) qg=>0, «a>10

Proof. Let us perform the operations

: (i 2 ourds 2 20 xdy = glu, 4L,
(@) - (A, u), :SS( lwu|® + qu)dady +S N u} s qSSa y = 4,
(3 a0 ¢

3 - of positive definiteness of A 18
Hence, the value of the constant v of positl

(1.18) v ={ (if ¢ > 0,2 >0)
= " _a; 12 >
(b) (A, W)z, > SS |V |? dady + - Su ds >
Q 519} (*)
m 1 RS 7 _]_ y 2 (19
> nin (1, ) [SX[ V!t dedy + | u
A 0

According to it, there 1s,

' riedrichs’s se inequality is used. ' ‘
Now, Friedrichs’s gecond inequality coording b X noasly

for domain Q, a constant Cp (depending on €2) 50
differentiable function, we have [, 121

SSuZ dzdy < CF[S S |V |? dady —|—Su2 ds ]
Q d

ire)
Therefore, from () we infer that

% Ty = v by
(A, W), 2 —é— min (1, 7)8 Su%la,dy = vulthy WL,

F N
The positive definiteness constant of A has the value
[ L omin(1,%) Gfg>0,a>0)
(1.19) o= Ym = —1 min (] ) 7\) (if ¢ = 0,
9. The variational formulation of the operatorial equation (1.12)

bori Lot with
(a) Veriational functional. For the operator 11@1 equa}t)g); )(1&%)%1‘1&_
) ous hou ] — ar space a
! emeans houndary condition (D(4) — a line , th ‘
o humogul_(‘nmi 1')'011111‘;‘::‘3'11;(1)'10cl illl)t&t‘ﬂiﬂ-td\' with the help of energy
tional funetional 18 dete . '(

functional, thus [(-,.) = (] | , B
U () = (A, ) — 2(f, w) = a(u, u) — 2(f, u) 4 Tilu, u) =

2.1 . a
o :S S( |Vu |2+ qu — 2fu)dady —O;T SuZ ds, u e D(4)

9Q
Q
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Now, the fundamental theorem of the wminimmum functional éiergy is
applied. According to this theorem, if A is a linear operator, syinmetrie
and positive definite and if equation (1.12) has the solution wuze D(A)
then, this solution is unique and minimizes the functional ¥, i.e:

(2.2) F(uy) = min F(u)

tt € D(A)
and reciprocally : it u, € D(4) is a global minimum point for F, then u,
i a solution (unique, according to the direct statement) for equation
112y, [7].

(b) The extension of the variational problem (2.2) to the natural domain
of definition Q(A) of operator A. The fundamental theorem, that is proved
in all treatises on variational methods (and functional analysis), can be
formulate in the case of the Newton boundary value problem, on a

larger linear space Q(4) = C¥Q) n CY(Q), called the natural space of the
operator 4. The functions from @(4) need not verify the homogeneous
boundary condition of type IIT (natural boundary condition).

We assume the existence of the function @ € Q(4) on which # attains
a minimal value. ,

Let e& R, be a given number and the test space (perturbation)
V,={h | he@(d). For fixed & and h arbitrarily fixed, we consider the

function ¢ iYF(/L”L + eh) and formally perform

)

G -+ eh) = ezl:s S(IVh[2 4+ qh®) daxdy + i S h%ls]—l—
Q . Fite)
{2.3) 4 2¢e [S S(Vﬁ < Vh =+ qubh — hf) dady + % S ith ds ] 4

\

Q i

\

¢ Q2

—|‘S S (1VE|2+ qi* — 2f) dmdy + % S Atds

We infer, from (2.3), that, on Q(4), F' is a quadratic functional, that the -
Gateaux differentials for F are

(2.4) DI, 1)=&+ eh)

= ZSS( Vit T h--qith —fh)d ody -2 _‘;S sihds
e=0 b

de \
a0
o A2/ h -
(2.5) D(dh, h)= l'g”ja_”)l = 288( VR4 ght)dady + 2% S h2ds -
= N
) 0 Q e R
(2.6) DR, h) =0, m >3

and. the following formula holds

(2.7) F(f + ch) = (F@l) + eDF (i, h) 4+ % DR, h)
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< Inresults that, with respeet to T, the differential DE(@, h) (or the
application b — DF(i@,h)) is linear and bounded. Therefore, we can write
DE(w, b) = I'(@#) h, Vi€ V,. Subsequently, I is Gateaux differentiable,

while theoperator (the: Gateaux derivative of 1) I"(@) applied on ke V,is

(2.8) F'(@)x — 2{8 S(wv Va4 que — f#)do dy + f S 1w GS}

Q (19}
We take the function f(e) = F(@ -+ eh), derivabie wifh respect to . It
results that £(0) (= F()) is the minimum of f. Then, according to Fermat’s
theorem, we have 5 )

(2.9) 10} =0 (with f1(0) = DF(&, b)) = DE(@,1) =0, ¥ he Vi= Q(4)

Sinee I i8 4 guadratic functional, (2.9) 1s a necessary and sufficient con-
dition of global extreme at the point w = 4. The w = @ ‘extreme point
is unique on Q(4) ag, in the contrary ease, the function f(e) would have
several extreines. But this is impossible, because f(e) in a second degrec
polynomial, Moreover, eI, h) >0 (as ¢ >0, « >0, (x> 0)) and
then, atter (2.7) the functional # has a unique point of global minimum
w = on Q). : '

(¢) Determination of the minimum point. The natural boundry con-
dition. The minimum point @ verifies condition (2.9) that, if Green’s
tormula is applied (quite possible as e Q(A)), leads to the identity (with
respeet to 1) '

(2.10) gg(— Afi 4 git — f) b dady + S (Ei L a) hds =0, VheV,

Q | a0 o h ! :

By using the proce.dure of the variational caleulus, from (2.10) we get
o e

(211) — Ad -+ qit —f=01n @(4) and ; - . 4 =0 on Q
1 \

Thus, the minimm point u = 4 (€ Q(F)) is a solution of the boundary
differential problem (1.11) — (1.11a) or of the operatorial equation (1.12).
The boundary condition (1.11a) which also appears as an extreme
boundary condition [in (211)] is called a natural boundary condition ;
therefgre it can be removed from the agsociated variational problem posed
for the functional B [although it appears in the initial boundary problem
(L11a)]. « " ;o

The variational problem equivalent to the boundary differential
problem is

TFind the function. u(wx,y), (»,y) € Q so that

(2.12) (Pv) the functional

F(w) = minimum, u e Q(F)

(F() s given in (21) and Q) = Q(4) = €%Q) n CXQ)
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Py ny 3 " ™
= \R?’ém]‘“,lh‘e variational problemy (Pv) can he formulated on a
%%100(/ 0‘_0. 1;}10?10113 larger 'than Q(I"), with a less restrictive smoothness :
energetic space I7, of the operator 4 (the Sobolev space HY(Q)) '

3. The applieation of the Ritz i

] al . method Tor the approximat i
ol the variational problem PRrOLiRie solutigy
(2) Rite’s algorithm develops in the following stages :

1° The variational Blu), we V= Q) = C¥Q) n CYQ)

functional given in (2.1)
The variational () —oy7 Winimumn (17-dense subspace
problent | of L,(Q))
l ) : AR
3°. The approximate (3T A it
solution ; (2, y) = k>i;1 axCu(@, ) 5

{ ¢, € B! — unknown
{®}Y —base in V

l

4°, The Ritz system (3.2) . A = by, § =1, N
s g ’ _— )
A=1
5°. The Ritz system
coefficients (3.3) ayn = SS (VO; - VO, + q O;0;) davdy -
2 ;
- % O,;0, ds
i J/ 00 )
6°. Free terms in the - -
Sl (8.4) b = (f, &) :fQS @, dady; j =T,

Q

where ®;e Q(F),j =1, N are trial { Bl i i
j € ( ¥ i ial functions, linearly independent
ZJ(I)lﬁrltN . a{ld taken from a complete system of ,function},; {@1}%) The Rflzz
s thloﬂ 13 chosen’from Hy = span {®y,...,®y}, which is a linear subspace
:e.lla; }11&1 space V (= (Q(4)) of the exact solution u. :

Ry .
The existence and the uniqueness of the solution

3y TTON y i :
PROPOSITION 3.1. The Ritz linear algebraic system, (3.2), has a

unique solution.
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Proof. We consider the homogeneous system
N N o ]
Y ane, =0 or ) [(c((DJ(I)k) + N S q)j(l)kds] =0, j=1, N
k=1 k=1 i
or
y il (¢4 N “ —
[{ ((I)j, Z qu)k) - 7 S (Dj 2 (/'I;(ch ds = 0, 1= 1, N
k=1 k=1
!

We multiply these equations with ¢;, then, we add with respect to j
(from 1 to N) and if we take into account wuy, (3.1), as well as the
expression of a(uy, wy) (Which is a positive quadratic form) with ¢ > 0,
we get

.

o ==

Muy, y) + — N vk ds =0 =uy =0=Y ¥ =6 =0,kF=1N
\ k=1
3

since {®}Y is a linear independent system. If the homogeneous linear
system (Ritz) has only the trivial solution, then its determinant is ditfe-
rent from zero (the matrix of the system has the rank N). Therefore,
the Ritz non-homogeneous system, (3.2), is a Cramer system with a
unique solution.

FError

ProvostitoN 3.2. The error of the Ritz system on the space Hyc H
can be estimated by means of the inequality ’
1
— [ Auy — [llay, (H = L)), v>0
‘Y

where v is the constant of positive defintteness of the operator A, while u,
is the exact solution of the boundary problem or of the operatorial equation
(1.12).

Proof. As A = — A -+ q is a positive definite operator, we infer —by
using the Cauchy,Schwartz inequality in L,(Q) and the positive definite-
ness condition — that |[Aw| > v|u. Hence, it results that the 4~ inverse

(3.5) Ly — ol <

operator, linear and bounded, exists and that [A47] <—-—1— We have

Y
Auy =f, wy = A7 and uy — uy = AN duy —f) = (3:5) with Auw,
fe L,Q) and y given by (1.18).

The estimation (3.5) is not always useful as, in many cases,
lAuy — fllz not tend to zero as N — ooy [9], [1], [2]. -

(b) A non-convex polygonal plate (fig. 1). 1°. Choice of the trial func-
tions ®, (the base of approximate solving space). According to the
theory in [57], [4], [6], for the problem witk the homogeneous boundary
condition of type III, the trial functions, which should form a complete
system in H = L,(Q), are chosen in the form :

(3.6) by = (1 —+ —; m)pk — o Dp, k =_1,_I\T
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where : .
-~ the function  is differentiable on Q and has the properties :

(1%) ol 3) > 0, (3, 9) € Q5 (2) o(a, y) = 0, (2, ) € 6Q; (3922 — _j
. ?
(x,y) € 9Q; here, 9/on is the derivative ' i o
Y€ é e, 1 > derivative on the exterior normal at th
boundaa. y 00 ( 7| = 1); the condition (3°) must be verified on the pieeez
on 9Q if o = 0 is the normalized equation of 9Q,

— D is the operator

(3.7) D=Vl = g 9 -+ @ 9

v dr Y oy

— Py 2re the polynomials that for s (for ex
Legendie i L m complete systems (for example :
In the case of this problem, the finding of f i i
_In g his proble ¢ mg of function « is difficult
li);!'cimaq the polygonal domain Q' is mm-conzex (or, non—e(ljéhssic }m]'cglt(:
itz global method). The theory of R-functions can be erripluvet], il{

order to find o. Accordi is ' is i
o] @. According to this theory, « is chosen in the form [5],

" W = (1)10.)2(03

where (A, is R-conjunection)
O =a(a — ), = y(b —y),

Consequently, we obtain :

0y = — [(# — )Ay(y — @)]

(3.8)  ol@, y)=—zyla—a)(b—y)aty—c—d— V(z—e)F(y—d)%

, ! . .
Chebyshev’s polynomials with two variables are chosen for P2

P 7} 7] 1 N )
Pu = pulayy) = Ti(z) Ti(y), k = i3 C+DE+T+1) 5415

_ 1,7 =10,1,2, ...
hence (with Ty(a) = Ty(y) =1, Tiz) — 2. 7 = 22 T ’
=423 — 3g,. .0.) we intpue(i'/) intal) =l Lole) =izated: 1, .=

Pul@y y) =15 po@,y) = @5 pylm, y) =y pala, y) — 20 — 1;
s, y) = ay; ...

2% A trapezoidal cubature formula for @ non ;

oo 2 A trapes e . on-convex domain ., Con-
.;1(]:61 ing i,}_m 1531¢1-t1\fe]§r complicated expresion of function w, a conlplicafc):d
t(?l m rof.trml funetions is due to appear, Therefore, a cubaiure formula of
rapezoidal type will be uged for calculating the integrals in (3.3)—(3 4)

Let I(f) be an integral g - rex ro i ]
0 OAEQO'BO) gral on a non-convex polygonal domain Q (fig. 1,

(3.9) 1) — S Sf(w,.u)dw ay
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where f is a continuous differentiable function. The approximate calcula-
tion ol the integral I(f) can be performed by reduction to a simple inte-
gral. This is subsequently estimed by means of the trapezoidal formula
for a single variable ¢ [0, a]: Al )

¢ 1 N P
Il(G) = Sq(m)dm =h (7 91 + [1F} + . —E_ In—1 + E gm) -+ —Rm(q>;
0

(9
20 Rulg) = 0(12)

it the point partition A.: 2, =0,..., a5, ..., 2, = ¢ with constant step
hy = a; — @y is chosen on [0, «] and it we note g(s;) = ¢, 1 = 0, m.

Irirst integration. The variable y is considered fixed in (3.9). Then
it is integrated with respect to » on the line y = constant (y < 'd) and
we obtain i

1() — de Sf(w,y)dw

By applying the formula (3.10) and by considering h, to be the length
of the interval [w;_;, ], ¢ = 1, m, we infer
| b

(3.11) 1) — S[ Y Flan ) Az - O(h.%«)] ay

v
0

where

1 .

N h-’ﬂ for (xOﬂ 7/) and (09',,” 7/)

Awi = 2 ]

he for (z,y),t=1,m —1

Second integration. Hach term in (3.11) is integrated from % = 0 to

y = b or y = d, also using the trapezoidal formula for a singlé variable

and the point partition Ay: 4o =0, %1,y ¥my- -, Ya = b Wwith the step

hy = 45 — 4s-y, § =1, m. Thus, on the lines v = 2y =0 and ¢ = an = «
we have

Y n(a)
N/ 1 ) :
S@a y) wa d?/ > % h’y[?.f(xa; 0) + f(waa )+ .+ f(ma, Yp@r—-1) +
1]
1 0
+ @, .v/wn] + o(l2)
where

ee {0, mi and pla) = {”, if «=0

r, if o =m

141; Al S . 3
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On. th‘e .11@'9 T=af0 <P <sors<qi< 1) Wo LAV

ey

i) A 7d = . 12 .
S, ) a; dy 7I¢7Ly [ 3 H(@4, 0) + flagy y,) 4= ... A Fey Ypiormy) -

0
1 in
1B ‘2“][(“'1') Z/p(i))] =+ o(h3)
C
__'W;_ N _‘A",r/: k‘: x.fl‘_{
v 3w ] : b ke
-'_:I‘"__.l' B :/// D ! }3 3}-4
. I o ! . 1 I - L)
) ..‘___,I-__._:_.._.f-_...:_......l /y[/;.... _:y(d/éE
g o5 SO S I T T A
i Pl B (LT I RN
i = ] 7T TV Ay T
WU TR T Ty
2 :____1___ Vv I ] j
PN NI T we i et Rt Sl
TR T S A N LN I
2 S i e SRR
b : ] l' » ; L] L) . : - : A d : - : -
5 =y St S R AL N |
Vo MA | Y77 T T A
R R R Ny I ma X
Fig. 1
where
Pli) = {n, 'if 0 <.i <s -
il s <i < m

We notice that at the point D the functic
: e 1 ] at the netion f(ay, ) Az, ha
dlsqqntmmty of first type (jump). Thus, on the linef(m ’=ch3 “’,e haszg

b Vi b
S,f(ws, ¥) Axdy = b, Sf('ﬁcs, y)dy 4 % by Sf(ms, y)dy =
¢ N A .

— I [lﬂx 0) + f( 3
v 5 53 Zsy Y1) + .- +1 (w5, Yrs) + Zﬂws, Yr)

1 1 .
-+ ’é"f(ms; ?/r+1) + ... —+ *‘f(ms; ?/n—l) -+~ %f(ms, y”) ] -+ ()(];12/)

2

- ¢, 3748
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By using these estimations for the integrals, we find (from (3.11)) the
trapezoidal cubature formula on the point grid of the domain Q
(fig. 1) :

(3.12) Hf)z-SSfmay)dwdyzz
Q
where the coefficients A,; are caleulated by the formulas

"

Y Aufla, y) + olh?)
i=0

N
i=0 j=

hohy, for (a, y;) € interior
%hmhﬂ, for (wy;) on the boundary gQ without the angular points

A= 1 %l—h,hy, for the angular points O, 4, K, C, B

%hxhy, for the angular point D

| 0, for (@, y;) with s <4 <m and r <j <n

and b = max {hs hy}. : )
3°. A third order approwimation (N = 3). Let us have a plate with

the following dimensions : ¢ = b = 0,6 and ¢ = d = 0,4. We have

(3.13) o(z, y) = — ay(0,6 — x) (0,6 —y)B

s

(A:WW4MV+@—QW=B=w+ﬂ—%—A

' 0w PL0)
WY Sy Oy = ——
ax Y
. , .
O, =1+ o0, P, =1+ ooz — o), Py=1+ olcy — &);
oD, N , @
S = guy; —t= ocwy; o= —
ox ay A
% 1+ 0o -F 620) — OF — 0w ; T2 = a0, — 0pwy — QWgy;
o oY
)] ob
9P oY, — wpey — 0wE; =14 06 -} oy, — 0} — ey
% Y

The point grid A, on the domain Q is
Ay = s, ys) = (4, 8) 1,8 =1,43 by = hy = 0,2}
The coefficients A4, are given in fig. 2 and the coefficients a; and b,
will be caleulated with the numerical formulas

4 4
T kY . J(IR) __ ]
m=22Amw+dMJ“uS@wm
i=1s=1
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£URY . D x) 7 3 j b
fis - (I)m.is(b.(a:.is + (DI(/v%S(I);-'L?S + q (Dg’(I)%) 7

(o0 (2) ()
8m s ' 3_7/ s

y A
I B ¢
BL,' %1501 oon 001
()
) D
c 49002 .
i goy  0.03 001E
A= ;
[d] *'0.02- L] " i
e o Lo cloct 0.0%
0,04 q, 0 00
P AL VAL 0% 001]A

L 0
=0 0% 04 LEQ6 "

. 4 4 . .
“szY““MayzfzaaAﬂ@ayzla;@9;(@%

0
[¢] i, L 1 ] .
pl‘obléxﬁsﬂ umf?wal ewample. Let us admit the following data for two
S L L T |
h_l_5’ 6_——)\_:;; 0p =10; 0,4 0, =91;
(3.14) For problem (I': ¢ =10; f = 355:

For problem (II): ¢ = 2730 ; f = 40950. j
The Ritz system, (3.2), is
For problem T

4,002566 1,107512 1,107512 & 113,644919

0,778681\- 0,282945 | 1 ¢, = 31,252105
symmetry 0,778681 1 \¢, 31,252105
with the solution
(3.15) 0 = 28,631653; ¢y =y, = — 0,431220
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Foy problem L1

875,091298 240,647747 240,6477477 (¢, 13109,18154
96,576094  61,256225 | (¢ = § 3604,996371
symmetry 96,576094 1 ley 3604,996371

with the solution

(3.16)

¢, = 14,980212 ; ¢, = ¢; = 0,000267

According to (3.1), the third order approximate solution is

ug(@, y) = . ®@, ¥) + e[ Pylw, y) + Py(w, )] =

(3.17)

; ‘ [ 0w ow
= ¢(1 - ow) + 6‘2{.'17 4y -+ (o[ olw + y) — (£+—a_y)]}

icient ‘¢ Qi i 5  problem I and, res-
here the coefficients ¢, ¢, are given in (3.15) for pro and,
gectively, in (3.16) for pi,obfem IT, with the values from (3.14); the fune-
tion o is given in (3.13).

5° The approximate minimum value IS of the variational functional

F. The energetical norm of approximate solution wuy associated to the
operator A can be expressed by the formulas

N N N ‘
(318)  Jun i = (ux, un)a = Y, & Y (P ©))e; = kzl (fy Pr)er
k=1 j=1 =
Then, the value 1«‘},5’) is calculated as follows
N
(3.19) FY” = F(uy) = |un s — 2(f, uw) = — Junify =—k§1 (f, ®u)ex

If we also use (3.4), we get t.hg formulas

(3.20)

N

o 4 = ¥ bar;
g}

2
P = — fux

By using the values b, and the solutions ¢, (calculated above), we find

variational method. !

56,8056 ® _ { —3226,8766 for problem I

luglla = {443,1481 i —196380,2437 for problem II

The value F& is used to estimate the solution error within the dual

\
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