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1. Introduetion

Consider the nonlinear first-order Fredholm integrodifferential equa-
tion of the form - :

y(@) = Jla, y(a), Sff(w, Ly dl), 0< o< q
0

(1)
Y(0) = ¢ v

where f, I{ are given functions, « isa given real number and y is the unknow

function to be found, ) ‘

There are a number of important problems and phenomens which
are modelled using such kind of intro-differential equation, therefore thejr
bumerical treatment is desired.

While for the numerical solving of Volterra, integro~differentia1 equa-
tions a lot of methods are known, for the Fredholm cquations, in the lite-
rature only a. few are considered. Iing [6] congidered numerical methods
for the linear form of 1) by transforming it “ingo a second kind of inte-
gral equation. Phillips [9] considered the iterative methods for the nonli-
near case of problem (1). For a more recent paper on linear equations see
Volk [10]. Very reeently Garey and Gladwin [5] have adapted - for (1)
some direct numerical methods from the Volterra integro-differen bial
equations. They investigated also the convergence of those direct methods,
but most results are given only for the linear Problems,

In this paper we consider a direct spline collocation method for
the nonlinear case of equation (1).

The estimation of error and the convergence of the spline: colloca-
tion methods are investigated on the basis of an established connection
with the multistep methods, Conditiong leading to a unique $olution Y
for equation (1) can be found in Anselone and Moore [1] for the linear
case and in Phillips [9] for the nonlinear Pproblem. Tor a deep mvestiga-
tion of the discrete Galerkin methods for nonlinear integral equations see
Atkinson and Potra [3]; [4]. -



and suppose that f:[0,a] X R?
fying the following Lipsehitz co
ments :

(I1)

bounded. functio
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2. Deseription of the numerical method
Following [5] we shall write problem (1) in the following form :
y'(x) = f(z, y(@), (@), y(0) =« O< @< @
(2) :

2{x) = SK(@-, ¢, y(t)) di
. ) ol &
R it an enough smooth function satis-
ndition in respect to the last two argu-

| (2, 41y #1) — f(@y Yo )< Inliyy, — ¥zl +:l%y — 23]

N, Yy 21, (2, s 2) € [0, aj X R?

Also assume that the kernel K :[0, @] X [0, a] X K = R smooth

n satistying the Liprehitz condition :
(L2) TR, 4 ) — Kt 2| < oz — 2l
Vi, ), (@, 4 2) € [0, al X [0, a]l X R L1

These conditions assure the existence of a unique solution y of
problem. (2). . g P aieEs '
* " et A be a uniform partition of the interval [0, ] defined by the
following points : _ _, -

A0 =z < By <+ < Wp < Bppy << o < zy = @,

xp = khy, h = g
N
We shall construet & polynomial spline function s € Sy s:[0, a]— B,
of degree m(m > 1, given) and of a class of continuity "7, _to approxi-

mate the exact solution y.

On the tirst interval [0, &), the splind component is defined by :

i q/’(g) ”E()]“)_l) m—1 . a’O m
1.3 S‘/:———’O—l———’a’,‘——l—-...—L—_{——m _!“—J-/I)
( ) 0( aﬂ) 1/( ) 1 ] i (/”’), 1) ‘ m |

where
o
0) = ay 5(0) = 110, @, z), 2 = SK(O, 1, o) dt.
[0}

'determining by the

The other coefficients #"'(0), - y™-b(0) are
is to be determined

derivation of equation (2). The last coefficient @, 1
from the following collocation condition :

si(h) = f(h, so(h), SK(h, 1, «) at)

which is to be solved for a,.
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Having determi Hly i
e g nined polynomial (3), on the next interval [hy 2h]

(4) o(a): @) .
; ; L= ———L ( Y 1 )
H P . Jéo | 7 ' (ﬂ) -2/1) - | (a‘ 031)".’_

where s« o = C
T - @ of éllé)gbglfeljltgolt}'ls—(lelf i m;f ' %eﬂj—hand limits of derivatives as
ey | TR D 111ed above on h 2 B e
from the following collocation condition : [0, h] an_d.a/l is determined

$1(2h) = f(2h, $,(2h), SK(Z]L, t, $,(2)) dit)

"On the interval o %, : . . :
solution of (2 i (1efin£(1L,1) ;71“/:.:<+1], the spline function approximating the

(5) . m—1 S(f,) .
s(a): =Y U0 (0 g Loy
(8= ) ey

o 1!

(m g | Oﬁé)m

where s@(g;), 0< i< 7 - s
i)y U<t <m — 1, are left-hand limit fis

& — a of the seomer U imits of the derivatives 4
22 e segment of s defined on [a,_;, 2] and the pa‘ramet:g? e;k ?S
B | >

determined such that -
o

(6) 81:(@ir1) = f(@psq, S6(@p11)s ij(mkﬂ’ £, S—y(2)) dt)

B=0, N =1, s:— _ -
A ; w1 =80, L= (@ B, % :S H( @4y, T, 851)(0) e
3

J_‘]li) pl'()(‘edul’e & ieldq a s 1‘ [ i =
S g ! e 0 ¢ | ' V ¥ ' € ] (¢} i IG
T ) . , . : <.
g 0

can be uniquely determined from ( 6)
TrrorREM 278 "
M 1. If the functions f and K satisfy the Lipschitz condilions

' ] . a4 unque {

from (6). Replacing s given by (5) in (6) we have :

(7.) :a‘l‘: : u I K N (lk
hm-1 J(@sry A(@rrg) + m ! Wy ) —Ai:(”?kﬂ)}
where :
Ay(w): = £ W’)

i=0 'i!* G @l o= S]f(xlc+1, ty Sp-y(?)) dt.
§
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. If we denote equation (7) for brevity by
(8) G = Fk(ak)

using the assumption L1 for o< . the function FL 51{ -1 is a

1
contraction, and therefore (7) has a unique solution «, which can be
found by iterations. ;

In order to make a connection hetween the above spline method and
the discrete multistep methods we present the following theorem which
gives the relation between the values of a spline function and its deriva-
tive at the knots (consistency relation).

TUROREM 2. [T, p. 61] If s € Sy, then there exisls a unique linear con-
sistency relation between the values s(xy) and 8'(xy) k=0, 1,...,m —1,
grven by :

m—1 m—1
(9) )y " (@isy) =h E b8 (wees), 0K v< N +1 —m
k=0 . k=0

whose coefficients may be written as :

af™ 2 = (m — 1)1 [Qu(k) — Qu(k 4 1)]

10) b = (m 1) 1Quen( + 1)
where

. 1 ¢ 1\ k k-1

Oua) = e 3 (1) () o —

TuEOREM 3. The values s(w), k = 0,1, ...N of the spline function
consiructed above are exactly the values furnished by the discrete multistep
method described by the following recurrence relation :

m—1 m—1

(11) Z a/}m)yj‘*'k =h Z b;m)yal'ﬂn k= 07 L, .. ) N
j=0 #=0
if the starting values
(12) Yo = 8(0), 1y = 8(h), -« -y Yu-s = s((m — 2)h)
are wused.
Proof. For b < ild only one set of values y; j =0, 1,... satisfies

(11) with the starting \lra'lues (12). By (9) the values s(ax), &t =0, 1,...,
satisfy (11) and evidently have the starting values (12). Therefore the
values y(a) must coincide with the values s(ay). :
Because s € (™1, we define its m'" derivative in the knots x; by the
usual arithmetical mean : '

S(W)(lek) A _]2;_ [s(m) (M w_ _‘])‘_. h) - st (m‘; -+ —;— h):l, k= 1_, N —1

(13)

knots as the quadratic spline s and has the degree of exactness two

ot
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Let Y be the unigue folution of (2) and we write :
Yot = y(ow), yp: = Y(an), & = 2 @),
Skt = 8(aw), 810 =8"(m), k=0,1, 2,.. -y & = kh.

LeMwMaA 1. If | s(2) — Y(aw) | < Kh?, where K is a constant indepen-

Q@

dent of h, and if () = flag, s(x), Sl((mh., i, $(1)) A1) then, there exists a

0
constant I(, independent of hy such that

[$(ap) — ylay) | < Kby 18" () — y'(a)| < K h?
The proof ix just a slight modification of the Lemma 4.1 of [7].

LEMMA 2 [7:1). 69] Let y e C"+10, a), and s €8, with the Eknots
{2} such that the Jollowing condition hold :

(14) | 80 &) — Y Nay) | = O}, r = 0,1, ...,m — 1,

IZu:O,l,...,N—l.
and

(18)  18™(a) — y™(@)] = Oh), 1 < @ < wyuy, b = 0,1,.., ¥ —1
Under these assumptiods we have :

(16) Is(x) — y(@)| = OR?), ze [0, a]
where
(17) D= i s ' =
P 7=0,11{1.91m [*+ pr]y P =1
so that
(18) [s"Y(z) — y™(a)| = Oh), ze o0, al.

In what follow_s we shall investigate the quadratic spline funection
(m = 2) and the cubie spline function approximating the solution of+(2)
3. Quadratie splines and trapezoidal rule

r\. v, n
Theorem 3 for m = 2 leads to 1-step method :

Y b, . b
Yx Yo = 9 [yh‘ _,_ :!/k—l] = ? Lf("rk; Y, Zk) + f(mk—b Yi-1, zk—il):i

This is the trapezoidal 1ule and furnishes the same value in the

b 156,
s(aw) — y(w) = O(h?)

From Lemma 1 we infer that :

8"(@) — y'(2) = O(h2)
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Tt is casy to see that if x e [ 1, 2] we have -
§"(@) = y"' () 4 O(h)
The y; = «'is trivially an only starting valuc needed an the condi-

tions of Lemma 2 arve satisfied for m = 2, py = p; = 2. Using, Lemma 2
for s and once again for s’ in the role of s we have the following theorem.
.. Tumorem 4, If fe C¥[0, a]XR?) and s is the quadratic spline func-
tion approgimating the solution v of (2), then there exists a constant I such
that for any h small enough and x € [0, «] the following inequalities hold :

5(a) — ()] < K2, |°(2) — y'(a)| < IR2, | s"(a) = 37" (a) | <Ich

provided that s"'(xx) are caleulated according to (13) for m = 2.

4. Cubie splines and Milne-Simpson rule

Tor m = 3 of Theorem 3 we derive the followirng two-steep method :
B Lo, r o, h - ,
e (95 + 491 + Yial = — [f(y Yoy 26) +

4 Af( @ity Yimry Bim1) S Brmgy Yomsy 2u-2)] _

This is the Milne-Simpson rule with the degree of exactness four pro-
vided y, == o and y, = s(h), taken as starting values, have the same degree,

1t is not difficult to show that for m = 3 there exists a constant K,
independent of & such that

|s(h) — y(h)| < Kh*

Therefore we can conclude from the Milne-Simpson rule and applying

also Lemma 1 that :

[ s(an) — @) | = 0(hA), | s'(2) — y'(a)| = O(A),
|8 (@x) — 3" (@) | = O(h?)
Easy one can check that for m = 3 the following estimation holds :
[s"'(x) — 4" (x)| = O(h), for = e[@py, 2l

Consequently all the conditions of Lemma 2 are satisfied with
’m:3,po=4,p1:4,p2:2.

TumoreM 5. If fe C¥([0, a] x R2) and s is the cubic spline function
approximating the solution of problem (2), then there exists a constant K,
independent of b such that for any h small enough and » € [0, a] the following
inequalities hold : -

[ s\() — yI(z)| < Kh=1, j=0,1, 2, 3

provided that s'"'(ax) are caleulated by (13) for m = 3. .
Proof. Applying Lemma 2 to s with m =3, py =p; = 4 and then
successively to 8" and s’ in the role of s in this Lerama are resulting all

-

the assertions of Theorem 5.

7 .
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o and\&cﬁg iu};llllrll she ch};se 101% o1 dm(ziu'y differential equations, the quadra-
Ml bic s > methods considered here present severs '

; pline e sent several advantages
g?f{;\ril;i‘;"h]mndﬂll (1 h_nnwn me‘Lhndﬁ for the first-order Fredholin icnte;.;u-
tiun:a Il;o 1{‘;] p(.[[(t)llfrlijl_uns, 1;1-?;1)11.(-,111;1; smooth, aceurate and global approxima-

¥ he solution of (2) and its derivatives. The step si ca
o b solltion of (3) st 5 derive : step size b can Dbe
giimé];ﬁl{(l (Lt-. .l:lil}; step, if it iy necessary withont additional complications

: i’LJ"]]HﬂhlL{lte{l direct spline method need no starting values '
\-'-Llllta#-f-vh-i(ll-lwl t“ ll_n-, 3lqt;ml that in this paper it was assummed that the

d'l'- % are ci culated exacfly. In the practical applications a suitable
quadrature formula is suggested o be chosen ' S

5. Numerieal examples
Fzample 1. (See Linz [6]).

1
y'(a) = yla) — log, L(ro ,;_g y(6)

y — et ed
x4 1 z - ¢t
0

y(0) =1
ghe exact solution is y(x) = e—10=,
Lizample 2. (See Garey-(Gladwin [53D)
1
¥'(w) = — 10y(x) — 100 Sy(t) di —10(e"® — 1), 0< <2
]
y(0) =1
'Ij‘lle exacl solution is y(a) = e-107,
For both examples the cubie spline funections are constructed to

aép;[.)ﬂommate the exaei_s solutions. To compute the values of z, the Newton-
regory quadrature formula of order three was used. The values of the

error e, : = y(wy) — 8(x,) are contained in the t ving t 3
- ,} a [;.05). in the following tables :
;)L‘ﬂow :'1/15 61& )

.05 0.521 0.122.10-3
0.10 0.331 0 .345-1?)73
0.15 0.335 0.398.10-3
0.29 0.139 0.422.10-3
0.25 0.798.10 0.694.10
0.30 0.561.10+ 0.775.10+
Hzample 2. (h = 0,05) »

Zn Yu ey
0.05 0.521 46 ‘
. 0.146.10-3
0.10 0.225 0 .247-13‘3
0.15 0.220 0.684.101
0 .2(3 0.195 0.954.10¢
0.25 0.825.10-1 0.264.10¢
0.30 0.596.10-1 0.529.10-4

5~c¢, 3784
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