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1. Problem and approximations

Congider a dynamic system consisting of a finite body generating
@ gravitational field, and a test particle moving periodically in this field,
The problem is : given initial conditions, which is the particle trajectory
after one revolution ¢ (Of course, if the attracting hody may he assimila-
ted with a point mass, the motion ig Keplerian ; elliptic in oup case,)

We shall use a sinal] perturbation method and the following appro-
ximating hypotheses

(1) The attracting Lody is geometrically and dynamically Symmetric
Wwith respect to an axis,

(i) We limit ourselves to the first order approximation with reg-
Pect. to the small perturbations,

(i) We use a first order aceuracy with respect to the small para-
meters featuring the trajectory, '

This problem wasg approached by many authors, with less or equal-
ly restrietive hypotheges. Although there exist mcre general results, our
present results are {he most. complete for a first order theory (see Sec-
tion 4). This mathematical model has important applications in celestial
mechanics and dynamic astronomy ; that is why we shall use an orbit
theory terminology.

2. Basie equations

Let the axis mentioned in bypothesis (i) and the equator (in the
usual meaning) plane of the attracting body define a right-handed Car-
tesian frame. We shall express the motion with respeet to.this frame in
Keplerian orbital clements, choosing as bagic time interval the nodal
period, Accordingly, since the motion is perturbed, we start {rom New-
ton-Kuler equations written with respect to the argument cf latitude
“ (e.g. [1, 47), congidering them feparately by virtue of hypothesis (ii).
So, in a symbolic matrix form we have :

(1) dY/du = (Z]u) EA, Y(0) = Y,
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where Y = (p, ¢, k, Q, )7, A = (8, T, W)*, B = (Ii), j =1, 5, s =1, 3,
with :

(2) By = By = By = By = By, = By, =0, 1y = 217,
By = 1B, By = v¥r(q + A)p + A), iy = kr3BC[(pD),
By = —r*4, By, = r3(0(k + B)/p + B), gy = — qri8C/(pD),

By = r3B/(pD), Iigy = 734 [p.
Here p = gravitational parameter of the dynamic system, p = semilatus
rectum, ¢ = e cos o, k= esin o (e = eccentricity, o = argument of
pericentre), QO = longitude of ascending node, ¢ = inclination, r = radius
veetor, Z = (1 — r2CQ)(pp)?)~, A = cosu, B = sinu, € =coss, D=
— sin 4, while 8, 7, W arve the radial, transverse, and binorinal compo-
nents of the perturbing acceleration.
The variations we search for are :
21
(3) AY = S(dY/du) du,
0
where the integrands are provided by (1), and the integrals are performed
by successive approximations with 7 =~ 1. By hypothesis (ii), we consider
the elements of Y in the right-hand side of (1) as being congtant (over
one revolution) and equal to their initial values Y, Bearing this in mind,
we shall hereafter omit the subseript ,,0'"; the factor 7 willalso be omitted
in advance.
By hypothesis (i), the perturbing function is (e.g. [8]):

oo
(4) U=y, e, Ry~ h P(sin o),

n=2
where R == cquatorial radius of the attracting body, ¢, = dimensionless
small parameters featuring the gravitational field, ¢ = latitude, P, =
— Legendre polynomials. With this A is: il
(5) A = (U}, Uy v YA DB) tan ¢, Uyr~ O sec ¢)7,
subscripts marking partial derivatives. Performing the calculations,
taking into account the fact that sin ¢ = DB, and writing :

(=)0 4 1)(2n — 2m)! (—1)™(n — 2m)(2n — 2m)!

—lﬂmn - ) Gnm - y
orm ! (n —m)! (n — 2m)! 2% (n — m)! (n — 2m)!
(6)
we have :
oo [112] 7 . 7 .
(7) A — E Z ‘U,C,,lf”?‘"("+z),D’“2nlB"‘;zm"lil,
n=2 m=0

with a = (Fyn B, Gund, GuuC/D)*.
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18} dder - - .
. :pjﬁn:_ld(jl no\z‘Bthe orbltlequatlon in polar coordinates written ag
fion N fiI‘Stqoi‘(iFGI'/in).(ofmli:(({r)img']inOthOSiS (iii), we -expand this equa}
(1) bocomes - ¢ and #, and replace the results in A and E. ’So,
(8) dY/duw = BQ,

where @ = (1, ¢, k)" and :

8

[
(9) . B — E G’"(_R/p)nl)rumnBn—Zm-jb,
2m=0

R

Il

with b = (b)), j =1, 5, s = 1, 3, and :
(10) by = 2pGund, by = 2(n — L) AZ by = 2(n — 1)Gomd B

e ‘ ’ j nm Dy
Doy = 200 A® 48, B byy = 206G d 4 (0P~ (20 — 1)@ )A B2

B ’ ‘ nm 9
bys = ((C/D)* 4 20 — )G, B -+ (Foyw — (20 — 1)@,,,) B?

i ! wim 7
by = (2Gum — Fun)A B, by — — (CID)*G B — (nF,,, — (20 — 1)G,,) 4B
b33 5 GnmA e (”’I—ﬂnm* (2”“ 1)Gnm)A ]32, | ’
by = ‘(E(:j/,QZ)G,,,,,]i, bas = (O[D¥(n — 1), A B, by — (0/D2(n — 1)Gyn B
bs1 = (CID)Gun s, byy = (CIDY(n — 1)Gd?, by — (0/D)(n — DG nd B ,

In this way the right-hand sides of (1) or (8) contain only explicit fune-

l)iO S Oof u ( }ll' g qu i N s1cere st 1 1¢
18 f 2 Ou5h A B 'Lnd uantitices si 3
; ,‘I.io 1 y ) e U Nt 1CS  COIs ld b | d constant over one

3. Results

IJ(‘/t us h() W i]ltl‘ e = ] Y &) l o I

) ! B Oduc = 8 . ] Ne3 ! i

\Vho“e 1 t(\(y ‘a1 ‘l . 1A 4 ( ) (10) 1 (3), and remove tlh,(; 11 Gb‘l“zL 8
2l 111 plct 1(, 5 are O_l '-lle [()1_1_1“ A jjj, 1 e [ _r' ‘/\ itll (IIIS (3) b(‘(}oln(’% .

(11) AY =D
with : 2
9 ' oo [n/2]
(1 ) D = E Z C,Z(R/]J)"D”‘Z'"’(l,
H=2 m=:0 -
amvd,_d - (di), 7 =1, 5, § = T:&; where :
(13) = (Z_ll — (ll3 = d,, = (131 —= d33 = d42 e d51 — (153 s 0,

d12 =i 2(” R 1)G'mnp(]u~zm~1 - In—-zm-l—l),
20 dzl — 2Gnm[n—-2m~1 ‘IL (an - 20:14/1)111—42'm+1,
tolyg = (2n — 1 4 (CID)YG il gy + (nF,,, — (21 — 1)G )M ygmio
nm L n—2m+2,

‘(139, - ('(2711 —1 — (0/]).)2)(%7“", - /"LFvnm)[n—Z"l + (nF”"”_(zni] )G ])I 2
A nm n—am+2s

d41 == (O/Dz)GnmI;z—zm, d43 = (’”’ e 1)(O/Dz)Gnmln——zm+17
d52 . (”‘ B 1) (O/D)Gmn(1n-2m—1

. In—2m+1),

¢ o
where J; = S B/.du, jeN.
s Rl i
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We perform separately the integrals in (13),":f0r even and odd .
For n = 2t, and taking into account (6), A1) — (13) lead to :

(14) AY = FQ,

where ;
t

Z 7_&02;( R/]))21D2l-—2"%H“”f’

2ut=0

(15) F =

M8

14
(—1)" Y4t — 2m)! (2t — 2m -1y
23"l Lt —m - 1)1 (2t —m) ! (2t — 2m + 10!

(]- 6) I{tm -

and f = (fy,),j =1,5, s — l,T, with fj; = 0 except :
(17) Jog = U2t + 1)(2t — 2m + 1) — (4 — 1)t —m) —
— 2(C/D)*(t —m)(t — m + 1),
Jao = — 2t + 1) — (4t — 1)(t — m) + 2(C/D)Xt — m)(t —‘ m - ‘1),
fn=— 201Dt —m)(t —m + 1).
For m = 2t 4 1, and taking into account (6), (11) — (13) lead to :

l

(18) AY = GQ,
where :
b ! Y2y n y
(19) G e E Z 7302H—1(R/p)2t+102t—2 +1I(tmgy
t=1 m=0

(__1)1)Lt(4t — 2m -+ 2)! (2t — 2m —+ 1) Ut .
23" L (t —m +1)1(28 —m + D42t — 2m 1+ 1)!

(20) K,, =

and ¢ = (g;,), j =1, 5, s =1, 3, with gis = 0 except :
(21) " g1y = 2p, g = —1, 13 = (O/D?)(2t — 2m +- 1), g5, = C/D.

4. Comments

Examining (14) — (17) and (18) — (21 ), we remark that in hh{;tfaxil'f}lit _
sion (4) the even (n = 2{) terms have zeroth order (m. g and ki),ln cr;l,)“_)
the longitude of ascending node (namely a 111'eceah11m} (_!jj l‘? o NIJ),
first order effects in eccentricity (l.hrough q, k; the or b]‘q is defor 211{1 . .];
and do not affect the semilatus rectum and inclination. The odd . ('}’l-. : *:L- "531
terms have zeroth order effects in eccentricity (t]n'oug_h q) and m?i 91‘ o
effects in the semilatus rectum, longifude of ascending node, and ine
11&‘5101}1.‘116 problem presented and solveq here const‘:.ibutes @ good z}ppr(t?;
mation for different problems of celesm@l mechanics and Cl}rllll?“éln'lc r?ostion
nomy, among which the most important is the.plz_m‘cta“l )i bf%tet }1162;8 l(i) on
theory. Indeed, considering the planet as tl.llflll_l_}lg Ly Do ]; )y, 18
oravitational field is featured by a potc_'.nma;l V= ll’N —{—_ 7 d‘f"om
?’ xy = — pfr is the Newtonian potential, while 1 z = —U’, obtained ir
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(4), is the perturbing potential (the small parameters ¢, characterize the

zonal harmonics),

Such a mathematical model was applied especially to the artifi-
cial satellite motion in the mnoncentral terrestrial gravitationa] field.
Various results were obtained (e.g. [2, 3, 5—8]), mmany more general by
relaxing hypotheses (i) and (iii). But al these studies consider only one
or few of the first terms in the expansion (4),

Our results allow to find the first order effects due to all termg
{even and/or odd ; Separately or together) in the expansion (4). Trom
this viewpoint these results are the most complefe for a first order
theory.
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