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BERNSTEIN POLYNOMIALS OF MATRICES
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1. Introduction

Let 4 be a matrix of order # x n (ie. 4 e&™ "), For a suitable
funetion. f, fhe definition of f( 4) on the spectrum of 4 is well known
[3]. Usually to construet f(4) we need to evaluate the eigenvalues of A
and according to their algebraic multiplicity it is necessary to construct
the fundamental polynomials of Hermite interpolation o, 4). The comn-
putation of these matrices can be very hard. :

In this paper, by Bernstein’s operator, we construct a sequence { Bu(f;
A} of polynomials of matrices approximating f(4)and fP(A), j=1,.. .,
without evaluating the eigenvalues of A. i

2. Definition of matrix funetion
Liet A be a matrix of order » and let My - 5 As be distinet eigenvalues

s
of algehraic multiplicity n, . . Mg respectively, with Y n = n. If the
i\ gl i=1
numbers fP(), k =1,...s j = 0,. .., exist, it is possible to consider
the Hermite polynomial p(a) interpolating f on the knots ST

#y—1

(2.1) pO) = %N SO0,

with ¢, ; fundamental polynomials of the Hermite interpolation. Thenw
f(4) is defined as

(2.2) J(A) : = p(A).
It wy =my = ... =n, =1 (2.1) becomes the Lagrange polynomial
interpolating f and we have
i LI — )
(2.3) pd) =Y O I ———,
. K=1 j=1 A — Aj
j#i

where I is the identity matrix of order .

In such case we assume fe 0©, Whenever the eigenvalues have
multiplicity greater than one, we assume fe OV with [ = max, n,.
The following theorem gives a useful decomposition of f(A) in terms of
spectral components,
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TiroREM 2.1. [3]. Let A O, with distinet eigenvalues 1, Aoy - - oy,
and let f(2) be a function defined on the spectrum of A, such that there exist
the mumbers (%), &k =1, .. 9% ] =10, .. —1, where ny is the alge-
brade multiplicity of ). Then, there exist the matrices Z, , independent of
[, sueh that

(2.4) fA4) = %' f90u) Z,

s, 1 i
Zis = = (A — NI Zgy,

Moreover, the matrices Zy ; are linearly independent members of (2>
and commute with A and with each other.

It can be easily proved that an expression for 7, is the following

s np—1 1 1 0]
Zk,[) = H(A e ?\11)"5 Z _1- s (A T 7\k1)i k= 1, C S,
o R (LR ST
i=1 A=A
ik

. It we know the eigenvalues, the component Z, ; can be determined
by a suitable choice of funetions J(3) [3, see es.3, p. 317]. Obviously also
this method can not be practicable for matrices of high order,

3. Bernstein polynomials of matrices : definition and properties

For a given matrix 4 € & * and for a function f defined on [0, 17,
we denote by B,(f;«) the Bernstein polynomial of degree m, defined as

1mnm:éﬂmmd£),

m
where

_Pm’k(m) _ (’);’L ),CUL(]_ . w)m_k-
v

For their prineipal properties see (4] [6], [7].
Now we detine the m-th Bernstein polynomial of matrices

n k
(3.1) &Uﬂuzzpwmmﬁﬁ,
#=o \ m
with
m g m—k
Poi(A) — 7)mu—A).
;
It is easy to prove that
(33) Z Pm,h‘(A) = 1.
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We observe that. B,,(f; 4)is a linear operator, since if h(d) = «f(A4) +
T Rg(4), @, Be . :
Bu(l; A) = oaB,(f; A) + BB.(g; A).

1f 0 is the nul matrix of order #, we have
Bulf50) = fO)L, B, (f; 1) = fQ1) I

Setting ¢,(x) = 2%, {e N the following relations hold

(3.4) ' Bu(eg; A) = 1,

(3.5) Buley; 4) = 4,

(3.6) : Byey; A) = A2 + Rl A — A).
w

Moreover the following recurrence relation helds for the polyno-
mial P, .(4),

(37) 1),,,‘1;(11) E ([ - A)Pm—l.k(A) + Al)m—l.k—l(A)'
ProrosturoN 3.1. Setting

7

ﬂ:f( )I,i:O,...,m,

m
we have
k fEk-1 k—1 . . ;

Ji=d — A1+ 4 iy K=1,...m, 1 =0,...m — &

and
f(1)” m Ij'm(j; fj—)

Proposition 1 generalizes the well-known algorithm by de Casteljau [2]
and there appears a stable algorithin,

It can be proved that B,(f; 4) preserves the structure of triangular,
diagonal, symmetric and normal matrices. Moreover i A is a positive-
semidefinite matrix and f > 0 then B,(f; A) is apositive semidefinite
matrix,

4. Convergence

First we introduce some notation used in the following.

If fe C'(a, b)] we define [ fllo = MaXagras |f@)]. We denote by
@7 —1,17 the space of funetions ith ¢-th derivative continuous in
[—1,1]. Let o(f; 3) be the ordinary modulus of continuity defined by

o(f; 3) = supgencs [ Apflli—-t,0-2y 5 & > 0,
Auf(@) = flw + h) — f(@), /]| = max_ic,c1 | f(2)].

Finally we denote by || || any compatible norm of mairix.
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v THEOREM 4.1, Let A be amatriz of order n with s distinct etgenvalue
Ay -y A of multiplicity ny, . . . n,, respectively. Lf it is meadingful to consider
J(A) and if the eigenvalues hip 1 =1,...,8€& with

then

(4.2) I Bulf34) — fA)] ~ O ( i) s

m

Furthermore, if f € ¢~V ([0, 1 Dy U= marocres {n} we have the following esti-
mate of the ervor

() " 1
(4.3) I Bu(f; A) — flA)| < const max 1P o + o fP; T:—)
_ O<hai—1 w . Vm =k
PrmorrM 4.2, If f(2) 1s « holom orplhic funciion on a circle I of radius
B >0 and if all the eigenvalues of A e C*r le din U then . . .
Um | B,(f; 4) — f(A)] =0,
MO0, ) - i
_ Tuworem 4.3, Let A be « matrig. 1f it 1s meaningful to consider
SO(A) and if :

0 <2 <1,i=1 s

T )
then

Lim || BR(f; 4) — fO4)] = 0.

M=I00

5. Extensions

The polynomial B,(f; A) defined previously can be used to approxi-
mate functions of a matrix 4 whenever the cigenvalues satisty

0 < <1, -

if they arc real, and lie in the circle of convergence of f when they are
compléx. We recall that if p, is the spectral radius of A4, ie.

wa = Imax |/,

I<igs
then the cigenvalues of 4 lic in the disk ¥ — {zeCllz] <||4 I}, for any
norm of matrix.
-~Let f be an analytic function on K and let n=4]. Then we
define the following polynomial of matrices
e ) mo ]1
(5.1) BifA) = ¥ P,*,..,A(A)f(-r, (2 LA 1)) ,
o U m
where

Paﬂr’z H(d) = (77_7/ (A -+ -nI)k(.q[ l fl)”"k-
P ]i} 27) . 2'.) i
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This polynomial approximates S(4) in K. The following theorem
holds
TueoreM 5.1. For a given matriz A, in the hypotheses that it is
meaningful to consider f(A) and if hipt =1,..., s are real with
$

- S <y t=1,...

then

(5.2) Lim || Bi(f5 A) — f(d)|| = 0.

1li-;)00

Lurthermnore of f e Q-D([ — Ny 1)y = maxgcres {n} the Jollowing estimate
error holds i =

(3.3) | BE(Sf; 4)— fld) || < const max {J% + (f("" ; &2ﬁ~)}

Oghsial " m — k
THEOREM 5.2. If f(2) is @ holomorphic funetion in K, then

(5.4) lim | B,(f; 4) — f(4)] = o

=00

For the polynomials B(f) an algorithm of type de Castiljru holds.,
Indeed we have the following,
Provosrrion 5.3, Setting

,f[g:.f,:y)(zh—i LE »-,)J)[,i:o,...,m
we have

fE = (ﬂ%) JE+ (q_[#) Jid, k=1, m, i =0, . o —k
2v. ) . 24 oy b

and ,
= BX(f; A).

6. The prools

The present paragraph is divided into three sections. In the first
one we give a collection of properties and estimates for {he ordinary
Bernstein polynomials. In the second section there are some theorems
for the functions of matrices and, finally, in the third one there are the
Proofs of the results stated previously.

Section G.1.

THrorREM 6.1. [5]If fe C°[0,1] then

If — Bulf) o < const o (f; . V%»_)

where const is Sikkema constant independent of f and m.
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"THEOREM 6.2 If fe O?[0,1] then

O = Bo(P)® o < ¢ i {M +o (f“') : ¥)}

Yy =5
Ocksp m l/m -~k

Denoting by Bj(f) the Bernstein polynomial in | — %,n) we have
THEOREM 6.3 If fe C°[— w4, 0] then

If — BE) oo < cost (f; 3&)
Vm

where const is a positive constant independent of f and m.
TneorEM 6.4, If fe C¥ [— x,7] then

i ”f(k) _ B;’,’;(f)”’) lloo < € Max {m«’_ + (f(fv) . .A__)}

; -
k=0 ) Oghksp m ]/7)7: — k

where const is a positive constant independent of f and m. _
THROREM 6.5 [4] If 0 <a <1, R > a, R >1 —a, such that the
Canterval [0,1] 4s snside the disk |z — a| < R and if the function

1) = 3, ez — a)F

18 analylic in |z — a| < R, then wniformly for |z —a|< R

lim B,(f;z) = f(2).

H—>00

THEOREM 6.6. Let us suppose — n< @< n R>a,R > n — a, suck

that the interval [— 0] 4s contained in the circle |# — a| < R. If
f&) = ¥ e — ay
A=0

8 analytic in |z — a| < R, then uniformly for |2 — al< R

lim BE(f; 2) = f(2).

M=300

Algorithm of de Casteljau [2]
Setting

ﬁ:f(;:;), i=0,...,m
we have for x fived in [0,1] '
(6.1) fE=0 —a) fi7' -+ affd, b =1,.. amy b =0,.. . m—k

and
o = Bu(f; ).
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Seetion 6.2

THEOREM 6.7, If 2,0, - A are the distinct eigenvalues of A e S
and f(A) is defined on the spectrum of A » then the eigenvalues of f(A) are

f( 7\1))f( )\2)7 Sty f( 7\9)-

THEOREM 6.8. If f(2), g()\), are defined on the spectrum of A
W2 = of(2) -+ Bg(2), a,pe &
k(2) = f(%) g(2),
then h(2), k(2) are defined on the spectrum of A and we have
MA) = af(4) 4 Bg(4), 0,p e
| K(A) = f(4) g(A), |
__TnxeoreMm 6.9. Let Puy,...,u) be a scalar polynomial in w,, . .!.,u,
and let fi(2), . . ., fA)) be functions defined on the spectrum of A e On*»,
If the Junction f(n) = P( Fin)y oo fN) assumes zero values on the
spectrum of A, then W :
f(4) = P(fi(4),. . .,f(4)) = 0.
Now we recall some well-known theorems [1] that we use in the

proofs.

THEOREM 6.10. Let {A,.;,},i‘i_,u be a sequence of nx n complexr matrices.
The sequence converges to A iff | A, — A | =0, %k — oo, for any matriz-norm.

The following theorem holds :

THEOREMA 6.11. Let the Junctions f,,f,, ... be defined on the spectrum
of A and let fo(A) = A, p =1,2,... Then the sequence {A, )%, converges
as p —co if and only if the m scalar sequences ‘

fl(j)<7\k).f:(2j)()\k)7 k= 1,.. 8] = 0, oMy — 1,

converge as p — co. Moreover if f9(3,) — fo 7\;), k=1,...,8j= L Jp—
m, — 1, for each j and k for some function f(x), then i

lim 4, = f(4)

M=—>00

Conversely, +f im A, exists, then there is a Sunction f(2) defined on the

m—-00

spectrum of A such that im A, = f(4).

Section 6.3

Proof of Proposition 3.1. Setting

|  Blfoy - oful(d) = Bu(f; 4),
we want _to prove

(6.2) Blfoy. - fal (4) = BIfE,. .., fEis] (A), k =1,...m
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By induction on & we prove (6.2). For k =1

fi=0~ f" + Afi
nm—1 m—1

.B[f&,..,ﬁ“| ZPmll j1 “Z Py oA I—A)fi?ﬂr

m—1

St Z Py (A)A 2.
=0

By permutability of P,,_, ,(A) with A and 7 — A, we obtain
m—1 ni—1

Blf&y" vy Jo— 1 )(A4) (I_‘ll }_l Py (A )fo + 4 Z Pm—le)fgﬂ:

m—1 "

= —A) I Pn—1.0(4) fo + L — A) 2 Py 4(A) je+f1217n—1z 1 (A)f.

11 follows
ni—1

Blfty oy fact 1 (A) = (1 — ) Payol ) 245 (L — A) P )+

i=1

+-A11n —1,i— 1 ]fz _‘ APm 11:1( )f)(;l

Now from (3.7),
m—1

BUS s Jactl(A) = Pl ) f3 -+ %, P ) 12+ Pun (4) f3 =

"

_“Zlml BmfA

Well we suppose (6.2) true for &k — 1 and wo ]n ove that holds also for F.
By hypothesis we have :

B[f{;—l fm IcJ (A — Bm(f A)

et us consider

nm—1 m—t

B[ﬂ)) T '7f1’$t—h':l (1‘1) - 2 Z)ﬂl—k,i(A)fik - Z 'P'”'“’t'vi(A) (l - A)ff—‘l +

m—=rk

+Z Tmlb )Afﬁ-l

By commutativity of P,_,. {A4) with 4 and 7 — A it follows
m k m—rk

BIfS, .., f5 1 (4) — Z Pori T A P4 fET

1=0

m—r m—pl1
= ([ - A) P?)P—Ic_.D(A)fOk*_l —[— Z ([ ‘A) Pm—l:,t(A)fik—l.'{_ Zl {1P1)a—k,i—}(AE)

=1

Bernstein Polynomials of Matrices 81

= I A) Pk S 1 5 ~ ) P yd) + AP )

t+ APy _pm_y(A) i,
Since

m k; o(A) (I T -A) m —k41, o(A)

-A-Pm k,m— A(A) m-lr+1 Mma—ky]e
it is also

BIfs, - fhal(4) = P srolA)fF1 Z (L —4) Pny,(4) +

i=1

'+‘ A-Pm~k.i—-1 (A)] fik—ll + Pm-—k+1;m—k+1 (A)f;;::llc+l'
By (3.7) we have '

me—Rk+1

Blf, ., f511(4) = Y Puop (4) i1 = BT i ity
i=0 '

Ehen (6.2) is true for any k, and therefore also for J — m. In this case we
ave

Blfi*] = Bu(f; 4)

and singe

B[fe] =12
the proposition is completely proved. [
Proof of Theorem 4.1, By theorem 2.3 the eigenvalues of Bu(f; 4)

are Bu(f; M)\Ba(f; Ay -y Bu(f; 2,), therefore by thecrem 2.1 B,(f; A)
can be written in the fmm

(6.2) B.(f; 4) = Z 2 [B(S; w)) 24,

k=1 j=o
Let R,(4) = fl4d) — B, f3;A), from the Previous relation by (2.4)
(6.3) Bu(4) = Z Z f(”(;\}) = Bf; M) 24 Jy

Since ’zim B,(f; n) = f( A) it follows that each of the elements of

fRi,,l(A) go to 0. Hence, by theorem 6.10 the convergence in uniform norm
ollows, :

Also by (6.2)

S mp—1

(6.4) I Bu(4) ]| < const Y X %) — BP(f5 0| "N 2.4
k=1 §=0
Since

1Z:.s]] < cost,

6 — c, 3784
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and, if f.e CO([0,1]). |

0w — BOGs )| < 1O — BE e

we have

—
| Ra(4) || < const 3 [ — B f) -
R L j=0" ;

By applying theorem 6.2 the proof is ;completed. []
We omit the proof of theorem 5.1 since it is very similar to the previous one.
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