REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE L’APPROXIMATION
= T * Tome 22, N° 1, 1993, pp. 83— 83

A CONVERGENCY THEOREM CONCERNING
THE CHORD METHOD

ION PAVALOIU
(Cluj-Napoea)

Let X be a Banach space, and let f:X — X be a mapping to solve
the equation ; ;

(1) “ . f (37) = 0’ R .
the chord method is well known, consisting of approximating the golu-

tion of (1) by elements ‘of the sequence (,),», generated by the follo-
wing relations : Lo : :

(2) Tpy1 = Ty — [mn—ly P ;f]—lf(wn); Loy ¥y € X7 " == 1,21 o (O

where [z, y; f] e #(X) stands for the divided difference of f on zyeX.
It is clear that to generate the elements of the sequence (z,),s, by means
of (2) we must ensure ourselves that at every iteration step the linear
mapping [w,.,; @,;f] is invertible. The mathematical literature dealing
with the convergency of the chord method containg results which state
by hypothesis that the mapping [z,y;f] admits a bounded inverse for
every x,y € D, where D is a subset of X,

In this note we intend to establish convergency. conditions for the
method (2), supposing the existence of the inverse mapping only for the
divided difference [a,, @5 f1. _

Let r > 0 be areal number, and write Slwyr) ={veX||o — a,| <
< 1} F
THEOREM. If the mapping f:X — X, the real number r > 0 and the
element € X fulfil the conditions -

(i) the mapping [Zoy @1 5f] admits - a bounded inverse mopping, and
I @o 215 17 < B < 4 o0 A

(ii) the bilinear mapping [, y, =;f] (the second order divided diffe-
rence of [ on w, y,2) is bounded Jor every x, 4, ze S(wg, 1), that is,
i@y, 25 f1l< L < + oo

(i) 3BIr << 1;

(V) oo = allflwm) | <1, o = ol f(a) || < ptt, where o — LB*(1—

— 3BLr)* and t; = (1 + |/5)/2;

(v) B po/[a(l — ob=1) (1 — 3BL#)] < r,
then the following properties hold :

(3) @ne Sy, ) for every n =0, 1,...;

(Ji) the mappings [%-1, @5 f1 admit bounded inverses for every
t=1,2,...; :
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(j33) equation (1) has at least one solution x* € S(x,, 7);
(Jv) the sequence (@n)nsq 18 convergent, and lim », — g% :

(V) lo* — aull S B ot [a(l — 3BLr) (1 — pftu=)],
Proof. We shall firstly show that for every «,y € S(w,, ) the follo-
wing inequality holds :

3) @0, @5 f17 [Lwo, @15 1 — [myy; F111 < 3BLr < 1.

Taking into account hypothesis (ii) and the definition of the second
order divided difference [2], it results : '

” [mO, wl)f] - [mﬂyf]” sll[m(), ml;f] - [wly w}f]|l+
Wy @51~ [w, 95 71 < Lllo — o) + Ly — @l < 3L,

¥rom the above inequality and hypothesis (i) there follows (3).
Using Banach’s lemma on inverse mapping continuousness, it results
from (3) that there exists [2, 5 f17, and :

@, 95 171 < B/(1 — 3BIx).
Suppose now that the following properties hold :
(a) nEs, =0 F;
(b) o= allftz)ll < etf, i =0, E;

and prove that they hold for ; — % +1, too.
Indeed, to prove that ,, € 8 we estimate the difference :

% Boal &
@y — @0 < g,:,)ll Tigr — o < TSR, g,o o [ flan) [| <

B o[l — p4=") (1 — 3BLr)] € 7
To prove (b) for ¢ = k - 1 we use Newton’s identity :

(&) f() =f@) + [2,9; f] (¢ — @) + [, 9, 25 f1 (2 — ) (2 — y)

and the obvious identity :

(5) T — L@, 9; 17 fl@) =y — [a; y; £ f(y).
Applying (4) and taking into account (2) and (5), we deduce ;
@) | = 1 @e11) — few)) — [@acgy 35 F1 (B — m) | <
Il@e-1y @y Bryss F11 1] Ty — T | | Bryr — Baey || <

LB || flm) [ | f(@e-1) Il (1 — 3BLr)— <
LB*1 — 3BLr)~2: a2 Pr—1

and writing o,,, = « | f(2ryy) | We obtain :

k., k=1 k41
A 2z ? - 2
Prer S pr pr—y < pgttaT = pliT,

that is, the property (b) holds for ¢ = % + 1, too.
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From (2) one obtains the following inequalities :
B p(‘;{
[[Znsy — @al < B o2 (1 —3BLr) o, <

S o —3BIn
for every n =0, 1,.. .,
From these relations, for every m,n € [N we deduce :
m+n—1 M
loom =l < X —7 J—B- gongr) <
(6) < Bejl a7l (1 — 3BLr) (1 — pflin=1)-1
from which, taking into account the fact that % > 1, there follows that

the sequence ( Tn)us o 18 fundamental,
At limit (m — oo), (6) leads to

lo* — @l < B ot a1 (1 — 3BLr) (1 — pliti=1) -1

where z* = lim #,. For n — 0 follows that o* e 8(ax,,r).

H=>00

It is obvious that f(a*) — 0.

Remark. In the conditions of the above proved theorem, it results
from (3) that o* is the unique solution of equation (1) in the sphere
S(z,,r).

’ Indeed, supposing that z* and y* are two solutions of equation (1)
in 8(zg,r), * # y* and using the identities :

ot = — [y, @5 17 fla*)

Y* = y* — [z @15 17 flg*)
we deduce

T —y* = (I ~ [, @3 f17 [a%, y*; f]) (% — y¥*)
from which, taking into account (3) it follows that :
la* —y* || < 8BLr || a% — y*|
but, since 3BILr < 1, it results that the relation a* £ Iy* is impossible.
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