([4]) the wegating (news strength age), and him he are at 

## was worth and Just west where Restaury American A CONVERGENCY THEOREM CONCERNING THE CHORD METHOD

is notice and the modification of ION PAVALOID floored business of the publication (Cluj-Napoca)

Let X be a Banach space, and let  $f:X\to X$  be a mapping to solve the equation : y goods to and in according of but yell expent around and excell

1 [20. 0], 24 - [20. 7] 1 o 1 [20. 24; 3] - [20. 20. 2] - 4.

(1) which is a structured in the structure of the struct

the chord method is well known, consisting of approximating the solution of (1) by elements of the sequence  $(x_n)_{n>0}$  generated by the following relations: . . . . bloom sold require grisvallot and Juda word saugurd

 $x_{n+1} = x_n - [x_{n-1}, x_n; f]^{-1} f(x_n), x_0, x_1 \in X, n = 1, 2, \dots$ (2)

where  $[x, y; f] \in \mathcal{L}(X)$  stands for the divided difference of f on  $x, y \in X$ . It is clear that to generate the elements of the sequence  $(x_n)_{n\geq 0}$  by means of (2) we must ensure ourselves that at every iteration step the linear mapping  $[x_{n-1}, x_n; f]$  is invertible. The mathematical literature dealing with the convergency of the chord method contains results which state by hypothesis that the mapping [x,y;f] admits a bounded inverse for every  $x,y \in D$ , where D is a subset of X.

In this note we intend to establish convergency conditions for the method (2), supposing the existence of the inverse mapping only for the

divided difference  $[x_0, x_1; f]$ .

Let r>0 be a real number, and write  $S(x_0,r)=\{x\in X\,|\,\|\,x-x_0\|\,\leqslant\,$ 

 $\{ r \}.$  Theorem. If the mapping  $f: X \to X,$  the real number r>0 and the element  $x_1 \in X$  fulfil the conditions:

(i) the mapping  $[x_0, x_1; f]$  admits a bounded inverse mapping, and  $\|[x_0, x_1; f]^{-1}\| \le B < +\infty;$ 

- (ii) the bilinear mapping [x, y, z;f] (the second order divided difference of f on x, y, z) is bounded for every  $x, y, z \in S(x_0, r)$ , that is,  $||[x, y, z; f]|| \leq L \leq + \infty;$ 
  - (iii) 3BLr < 1;
- (iv)  $\rho_0 = \alpha \|f(x_0)\| < 1, \ \rho_1 = \alpha \|f(x_1)\| \leqslant \rho_0^{\ell_1}, \text{ where } \alpha = LB^2/(1-\beta)$  $-3BLr)^2$  and  $t_1 = (1 + \sqrt{5})/2$ ;
- (v)  $B \rho_0/[\alpha(1-\rho_0^{t_1-1}) (1-3BLr)] \leq r$ , then the following properties hold:
  - (j)  $x_n \in S(x_0, r)$  for every  $n = 0, 1, \ldots$ ;
- (jj) the mappings  $[x_{i-1}, x_i; f]$  admit bounded inverses for every  $[x_i, 2, \ldots; f]$  $i=1,2,\ldots$ ;

(ijj) equation (1) has at least one solution  $x^* \in S(x_0, r)$ ; (jv) the sequence  $(x_n)_{n>0}$  is convergent, and  $\lim x_n = x^*$ ;

(v)  $\|x^* - x_n\| \le B \rho_0^{n/2} / [\alpha(1 - 3BLr) (1 - \rho_0^{n/2} (t_1 - 1))].$ 

*Proof.* We shall firstly show that for every  $x,y \in S(x_0, r)$  the following inequality holds:

(3) 
$$\|[x_0, x_1; f]^{-1}[[x_0, x_1; f] - [x,y; f]]\| \le 3BLr < 1.$$

Taking into account hypothesis (ii) and the definition of the second order divided difference [2], it results:

$$\begin{split} \| \, [x_0, \ x_1\,; f] - [x,y,f] \| & \leq \| [x_0, \ x_1\,; f] - [x_1, \ x\,; f] \| + \\ \| \, [x_1, \ x\,; f] - [x,y\,; f] \| & \leq L \, \| \, x - x_0 \, \| + L \, \| \, y - x_1 \| < 3Lr. \end{split}$$

From the above inequality and hypothesis (i) there follows (3).

Using Banach's lemma on inverse mapping continuousness, it results from (3) that there exists  $[x,y;f]^{-1}$ , and:

$$||[x, y; f]^{-1}|| \leq B/(1 - 3BLr).$$

Suppose now that the following properties hold:

$$(a) x_i \in S, \ i = \overline{0, k};$$

(b) 
$$\rho_{i} = \alpha \|f(x_{i})\| \leqslant \rho_{0}^{i}, \ i = 0, \ \overline{k};$$

and prove that they hold for i = k + 1, too.

Indeed, to prove that  $x_{k+1} \in S$  we estimate the difference:

$$\| x_{k+1} - x_0 \| \leqslant \sum_{i=0}^k \| x_{i+1} - x_i \| \leqslant \frac{B \alpha^{-1}}{1 - 3BLr} \sum_{i=0}^k \alpha \| f(x_i) \| \leqslant B \rho_0 [\alpha (1 - \rho_0^{t_1 - 1}) (1 - 3BLr)]^{-1} \leqslant r$$

To prove (b) for i = k + 1 we use Newton's identity:

f(z) = f(x) + [x, y; f] (z - x) + [x, y, z; f] (z - x) (z - y)and the obvious identity:

(5) 
$$x - [x, y; f]^{-1} f(x) = y - [x, y; f]^{-1} f(y).$$

Applying (4) and taking into account (2) and (5), we deduce:

$$||f(x_{k+1})|| = ||f(x_{k+1}) - f(x_k)| - [x_{k-1}, x_k; f] (x_{k+1} - x_k)|| \le ||[x_{k-1}, x_k, x_{k+1}; f]|| ||x_{k+1} - x_k|| \cdot ||x_{k+1} - x_{k-1}|| \le LB^2 ||f(x_k)|| ||f(x_{k-1})|| (1 - 3BLr)^{-2} \le ||f(x_k)|| ||f$$

$$LB^{2}(1-3BLr)^{-2}\cdot\alpha^{-2} \rho_{k} \rho_{k-1},$$

and writing  $\rho_{k+1} = \alpha \|f(x_{k+1})\|$  we obtain:

$$\rho_{k+1} \leqslant \rho_k \; \rho_{k-1} \leqslant \rho_0^{t^k+t^{k-1}} = \rho_0^{t^{k+1}}.$$
 that is, the property (b) holds for

that is, the property (b) holds for i = k + 1, too.

From (2) one obtains the following inequalities:

$$||x_{n+1} - x_n|| \le B \alpha^{-1} (1 - 3BLr)^{-1} \rho_n \le \frac{B \rho_0^{n}}{\alpha (1 - 3BLr)}$$
for every  $n = 0, 1, \dots$ 

From these relations, for every  $m,n\in\mathbb{N}$  we deduce :

(6) 
$$||x_{n+n} - x_n|| \leqslant \sum_{i=n}^{m+n-1} \frac{B \rho_0^{i_1^n}}{\alpha (1 - 3BLr)} \leqslant$$

$$\leqslant B \rho_0^{i_1^n} \alpha^{-1} (1 - 3BLr)^{-1} (1 - \rho_0^{i_1^n(i_1-1)})^{-1}$$

from which, taking into account the fact that  $t_1 > 1$ , there follows that the sequence  $(x_n)_{n\geq 0}$  is fundamental.

At limit  $(m \to \infty)$ , (6) leads to

$$\|x^* - x_n\| < B \rho_0^{t_1^n} \alpha^{-1} (1 - 3BLr)^{-1} (1 - \rho_0^{t_1^n(t_1-1)})^{-1}$$

where  $x^* = \lim x_n$ . For n = 0 follows that  $x^* \in S(x_0, r)$ .

It is obvious that  $f(x^*) = 0$ .

Remark. In the conditions of the above proved theorem, it results from (3) that  $x^*$  is the unique solution of equation (1) in the sphere

Índeed, supposing that  $x^*$  and  $y^*$  are two solutions of equation (1) in  $S(x_0,r)$ ,  $x^* \neq y^*$ , and using the identities:

$$x^* = x^* - [x_0, x_1; f]^{-1} f(x^*)$$
  
 $y^* = y^* - [x_0, x_1; f]^{-1} f(y^*)$ 

we deduce

$$x^* - y^* = (I - [x_0, x_1; f]^{-1} [x^*, y^*; f]) (x^* - y^*)$$

from which, taking into account (3) it follows that:

$$||x^* - y^*|| \le 3BLr ||x^* - y^*||$$

but, since 3BLr < 1, it results that the relation  $x^* \neq y^*$  is impossible.

## REFERENCES

- 1. Argyros, K. I., The Secant Method and Point of Nonlinear Operators Mh. Math. 106
- 2. Păvăloiu, I., Introduction in the theory of approximation of equations solutions. Dacia Ed., Cluj-Napoca 1976, (in Romanian).
- 3. Pavaloiu I., Remarks on the Secant Method for the Solution of Nonlinear Operational Equations, Research Seminars. Seminar on Mathematical Analysis, Preprint 7, 127-132

Received 1.III.1992

Institutul de Calcul, Academia Română, Filiala Cluj-Napoca, C.P. 68, Cluj-Napoca, Romania