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1. Introduection

The aim of this paper is to give a numerical scheme based on the
alternative method for the following quasi-linear parabolic equation

2
(1) ﬂ ._I__ I ﬂ =y a U
at ox Ju?

where u = u(z, ).in some domain and v is a parameter. Obviously some
appropriate boundary-initial conditions will be joined to the equation ‘in
order to ensure the existence and the uniqueness of the (classical) solu-
tion.

Historically this equation first appears in a paper by H, Bateman
[1]in 1915 when he gave a special solution for it. Besides some applica-
tions in the theory ot stochastic Processes, this equation having a strueture
roughly similar to that of Navier-Stokes equation, has a great importance
in aerdonamies. ; ; ) u }

Precisely this is the equation given in J. Burgers’ theory of a
mode] of turbulence [2] when the relationship to.the shock waye theory
is also pointed out. A mathematical study of the general properties of
this equation can be found in [3], [4]. _ « ;

In the last decade applied mathematicians have become increasingly
interested ‘in developing numerical stable schemes for the Burgers’ equa-
tion considered as a “core” of the Navier-Stokeg equation. Among all
these researches the methods of Spectral analysis seam to be of a very
special interest [5],[6]. \ ; : T

In what follows we shall give besides a classical scheme which uses
the finite differences methods, & numerical scheme based upon the alter-
native method. Both the stationary and the non-gtationary case are con-
sidered. ' ;

The alternative method divides the ‘given problem into ‘a fixed
point problem for a contractive operator (which once iteratively solved
supplies that part of the solution with superior harmonics) and a small-
size algebraic or differential nonlinear system (according to the stationarity
or the nonstationarity of the problem). . L e

~ Some numerical tests finally prove the higher accuracy of.the alter-
native method as well as Some computational advantages for ity use in
the problem considered. ;
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2. The alternative method
Let us consider an equation of the type
(2) Lu = Nu

- § — § is a linear operator while

on & normed space S, where L :D(L)
The solutions of equation (2)

N :D(N) ¢ §— 8 is anonlinear operator.
are searched in D(L)n D(N).

Let us consider a splitting 8 = S, @ §, of the § and P: 8 — 8, its
projection onto S,. Let H :8; — 8, be a partial inverse for L, ie. a linear
application so that

(3) H(I — P)Lu = (I — P)u Yuesd

Applying now to the considered equation (2) the operators P and
H(I — P)respectively, it becomes equivalent with the system

PLu = PNu (bifurcation equation)

(4)
w = Pu -+ H({I — P)Nu (auxiliary equation)

Tet us now fix Pu = w* (in the second equation). If the operator
(8) Ty = w* + H(I — P)Nu

is a contraction on a cloged sphere from S then it admits a fixed point
U which depends on w«* and which will be denoted by U(w*). This
tixed point would be a solution of equation (2) only if it satisfies the

equation of bifurcation (4) too :
(6) . PLU(u*) = PNU(u*)

The golvability of equation (6) considered in the unknown w* is thus
equivalent with the solvability of the given equation (2) and, conse-
quently, an approximate golution ¥ for equation (6) generates, via the
auxiliary equation (4), a fixed point U(w*) which represents as well an
approximate solution for equation (2). Details related to this topic can
be found in the papers of Cesari [7] and Trif [8].

Tor using this method to the numerical determining of the gsolutions
of equation (2), we will suppose that § is a real, separable Hilbert space
while L is & closed self-adjoint operator, whose domain D(L) is dense
into S and which has a kernel of finite size p. We will also suppose
that L has the eigenvalues A = ... =k, =0, 25, >0,.., \ — 00,
i — oo and the corresponding eigenfunctions @;, O, ... which determine
a complete orthonormed system in §.

We will also admit that there is a subspace S’ of 8 (which contains
D(L) and D(N)), complete with regard to a norm p. in:respect of the
Fourier series of the elements w e D(L) converge too. Additionally, we
admit that {u(®)/n k& > p is an I* sequence and that on 8’ we have
lul < o (w).

Concerning the nonlinear application N, we .suppose that it is
locally Lipschitzian, i.e. for every R >0 there is a Lz > 0 so that for
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a T 7y
ny w, v € D(N) with u(u) < B, u(v) < R the inequality
(7 ' N
(7) WNw — No) < Lgp(n — v)

Let now m >p7 Sm = SP{(DU '

us deﬁl’le, for every u N T (DP’ (DP+1) L ] (Dm}, So = {0} and let

: ™
Pp:S - Som Py = 2 (4, Dy ) Dy
A=1

(8) Hm : 8 - S; Hmu = E (u, (D‘_L) (I)t

k=m+1 7‘k

where o — ¥ G '
U = Y (u, Op)®,. Tt proves at once that for every w e § we have

k=1
H.me DL =
; (L), LH,u = (I — P, PoH, =0 and, respectively, for every

we D), H,Lu = (I — P >
uel (cf.’ oo, ( w)¥%, Pyplu = LP,u. At the same time, it can

| H,,| = . y WHy) < ao(m)
where ik
(9) a(m) :[ g [(H(Pe) ]
i-k=;H-l( Mg )]

thhtrlllfélélries l‘f]mt W) — 0, |H, | — 0 when m — oo

T Os;)gfﬁge ;u-qumstances it proves that for a sufficientl

o (a? ol given by (5) becomes a contraction on a mett'i'y

oo ol;er(:;, ?(:19 Tsf;: [fl'o_lijl 8’). According to the Banach fixed poi’n%
£0 he rator 1° admits a unigque foxed poin ‘ 3

by the method of suceessive a Pproximations, na.L}riglly L})}:’Fhulh S

W = ¥ g5t ok
y W =t oA H,Nu' s =0,1,...

and which depends continu
. 1nuously on w* (with res L
ac : _ respect to p). 3
i act?auelll: thetassunzkptlons made so far, this fixed pg)int calleﬁ) alzaﬁng o
ment for u* e 8, fultils the auxiliary equation (4) 0 W10 490y

The bifurcation equation (4) becomes then

Lt — l)ml\TU(’lb*)
7"
or, if u¥ —= 3
T, if ¢; Dy, on components
k=1

(10) ol — (NU(u*), @) =0 k — 1,...m

h' ) ‘Chrecents 1 L
W, 1(,]1%1 epr n_.r_\u’ll.ln the so-called system of determining equations
pummarizing, under above hy | .
uati 9 8 ypotheses, for suffici !
:élﬁfr_%c::lw(f) ad_llmts a solution % if and ouIy’ if eqlﬁtiilgilc(lle(;])tlzdlaﬁ;ge’
; and then @ = U(u*), For details connected with th; 1§Irl(l)ofz

f 01 aApPProx HAF in! i | 1
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3. The approximation oi the solutions of Burgers’ equation
Stationary ease

To compare and to test the numerical soh;tion? got tti]ll‘()gllgl%leilrl(ail axlxtritl};
hod it Jail sing other algorithms
ative method with those obtained using o o ! ‘ i
l;‘\};t\t* %(l)llllitio?l we shall consider the following nonhomogeneous Burgers
* ; ' ) N » - .
equation with joined boundary conditions
(11) Upe = Uy — f w(—1) =u(l) =0
here 2 e (— 1,1), f(o) = 2a° — 25 -+ 2. The unique exact solution of this
where z e (— 1,1), = .
j N2
problem is u(x) =1 — @ i if ]2.( 1y Py L
this case Lu = Uy Nt = Wiy — [, 8 = L 1), DA ., n
= {u Ien(ltz](ni(i,l) n C‘[—l,ﬁ, w(—1) = u(l) = 0} endowed with the uni
form norm. p. The spectral problem

(12) Uge = M, #(—1) = u(l) =0

h e Cl1 (5111 unetvions s = S "b" —I_ 11(.[ 116 111 »
&x 1 Q t} Glg(lll\ a ¢}

-

The solution of problem (11) will be lookded for in a truncated
Fourier series of the type

i itions 1 s in the previous paragraph.
M = — (km/2)? satistying the conditions made in the pr parag

il sl
w(x) = cp 8Sin— (x + 1)
! ( hgl 2
Let 1 < m < n. Then
™ 5 ]. L .
wt* = Puu =Y ¢ SID -g(a: 4 1)
k=1
(14) f L
it PSRN Y PR

)
k=m+1 7" T

fusing t ling system
The coefficients of the developement of f using the corresponding sy
are

-192 I éven
i I I3ws
I :8(2933 — 2+ z)sinlz‘—“(m+ 1) dy = :
—  k odd
o kr

In this case

2 ; k
w ; JE — N sin T (o - 1)
15)" Nu = 3 ovsin (@ Doy -eosx (@4 1) — 3 fysin = (o

hj=1
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from where the Fourier coefficients for Nu can be obtained at once

> o 1 ;
16) . Gy =¥ cicjigssin“—”(m o 1)cos]§(x 4- 1)sm7£27f(m+1) dw—f, =

£i=1 2
—1

TT k—1 . n—rk
=7 (Z J0i0-5 — k' Y GJGIH-!) —
=1

=

Consequently the iterations which lead to the a

ssociate clement for wu*
are -
b3 \ 1 k-1 n—r 4]‘ .
+ . i S k A
(17) "t = — ; (Z 366 - — k' Y 565an ) Iy k=m+1,...n
) k [ e j=b k T
with ¢, ..., ¢, being fixed.

We remark that in the case that the iterative process converges

(in the frame of the computer accuracy), for m sufficiently great, at a
S5t step

m W
uH = Y ok, - Y Of,
k=1 k=m+1

represents an approximation of the associated function U(u*). The deter-
mining equations become

A% Ie?r? L
—CZ-‘(E)=— 1 Ci*t k=1, ...,m
that means
(18) Ge=c¢f — O =0 [k — 1y ..., mj

When equation (11) has a solution for m sufficiently great, equation
(18) will also have a solution which can bhe approximated by an arbitrary
procedure. Such a procedure using the data ¢, . . ., ¢, computes 1y v vy I
(by the iterative process (17 )) and on the base of the results obtained -
it will improve the initial data Oy - - -y Gy, the cycle being retaken until the
requested accuracy is achieved. The funetion associated with this appro-
xXimate solution of the system (18), got by the iterations (17), represents
an approximation of the solution of problem (11).

4. The approximation of the solutions of Burgers’equations.
Nonstationary ease

In the sequel we will consider the problem

Usy = Up + Wity — f

' Fe (1,10l
(19) W@, 0) = wy(x)

ze(—1,1)
wW—1,1) =u(l,t) =0 >0
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were, for numerical computations, we will take
fla, 1) = (1 — x?)cost + 2sint — 2x sin% + 2a° sin?

This problem has the exact (unique) solution u(x, t) = (1 — «*) sin 2.

The main difference with respect to the previous case consists in
the structure of the operator N where the term u, is involved now.
Suppossing calculated the solution u; at the level of time ¢; the auxiliary
equation (4) becomes at the time level ;,,

Mgay Uy
3t
where 3t is a time step and (ud,; — w,)/8t is an approximation of , at the
level #;,,. If m is sufficiently large, the iterations (20) converge towards
the associated function U(wF,,). This would be a solution of equation

(19) if

(20) u}?ill . u';:‘+1 _]_ Hm(NU";-H _|_ ) s = O, 1, c ey ’M?.H = Uy

2
. ! J .
(21) ' gx_z uf = PpN U(u']!<+l) =t 5 u* |t==t]-+1

In this ease the coefficients of f(x, t) according to the structure of N are

S i S 1S . o k odd
;378 kw
(22) Tu(t) =
| ] 92 Sin2t k even
Je37e3 '

As wF(a, t) =}, cx(t) sin];l(w -+ 1), equations (21) represent a system
k=1

of differential equations with respect to the unknown funetions ¢(?), ...,
¢,u(t). These will be approximated at different levels of time, being known
at the prior level. For the envisaged numerical example, u(z,0)=0 and
hence ¢¥(0) = ... ¢X(0) = 0.

To system (21) of the shape w" = F(t, u), one could apply different
numerical procedures in order to get an approximate solution. Ifor instance
a predictor-corrector procedure involves

Wiy = Uy + SEH( T, uy) (the predictor)

’uj W uj + 11( 7y ,M]) ( FEN ) Iu/j+1) (t Ct )

where, of course, the corrector can be retaken.

The result of the numerical integration represents w* at the level
of time #;,,. The associated function for w«%,, is then an approximation
of the solution of problem (19) at that time level.The algorithm of this
procedure is then the following :

One knows the approximate solution at the time level ¢;, its coeffi-
cients being By, ..., DB,.

Numerical Allernative Method

#3

1. It evaluates

1
Fylty By, ..., B,) — — [#7)* ;
) Biy oy B) o B,,.--Suuwcbk Qi + fu(t)
Z1
2. Tt calculates the predictor

5"; == Bk -+ St Fk(lh Bl -

. 3. It calculates the a
Limit of the sequence

WENE Y-l iy s )
ssociated function for Cyyl

PYL 2 o BRIt ] T8 : 4 s
W = Ho(Mw — f(tyg)) syt BT By
k=m+1 le?m2 ot -

where the iterations stop

at a convenient r
4. It evaluates t rank §.

1

N kr\2
g Um) =1 { Cp —
) ( 9 ) Cy S VU0, dg - Sultyyy)
for ku:I, Ce,m T
5. It calculates the “correeted”

J+1 61, ..

Cl’ B ) GT"

v 3t

& = B, - 2 [p(1. ¢

* r 2 [-[(I:([h B) "f" Fls(li+1; 0)] k= 15 SRR ]
Steps 3, 4, 5 are resumed
ReC] ale § ed
6. Tt calculates the a (

the sequence

If necessary)
stociated funeticn for ¢,

s+l _ .5 E 7 B
WO =t - (N — f(t,,,) — v = G L)
} p k=1 kP2 3t 4
wiere the iferations are gt j
A i 5 are stopnpe 2 i At eB] -
Ll opped at a convenient rank S.

i : © 1y Cp We have now the coefficients of +
tion r}i: problem (19) at; the level of t.ij?_;éﬂ;:'mnm i
(. The values got through new C;r-

and step 1 is resumed for g new el Bul Byl st

level of time,
S !
5. Numerieal results

(&) In the stationary case, with the

also used for our broblem for finjt oy s, fathy We by

scheri e difference method, i.e. the following
Uiy — 2
S TS Uy U —
el =My .
S J Sx Ffi=0 _]:1,...’1()

where #, = u,, —= 0, Sy — 1 / i |

VRl oL ’ == 1/8 (n = 16). Here u; represents + roxi

1_1;2;1;1'01} 3t1the ex(}ct solution taken) in the uljlol((lgll e;gliﬁi thejbppl'om-
253 = 1,..., 15. The resulting nonlinear system hag bee]alcj s_(;l\;dl ljj;r

-+ ¢ 38 the limit of

oy €my U(UW*), a8 the

approximate soly.
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i 1
L Fh o | PP AT v 1 DK ace-
‘Newton method, obtaining after five 1L01'at10n: al_error Offtillselgg}‘rec—
ment into the system of magnitut.lt; 6 > 1078, the norm o »
. . a . . . . . 5 0 - ] I
tions on the golution being 1.8 x 1 bua) s W
The dame problem has been 11111ner1ca1)1y~1.1 cated I\ g(‘ggt“t&sﬂ’lllj;l bt
iv ). For = 1 iterations (17) are conver a
tive method too. For m =1 iter : e Tk
i ‘ led at « =1/2 on the respective orbit. Syste
traction constant evaluated at o 2 on t | ‘
(1(8) leads then to only one nonlinear equation W]nCll,,lla‘Ss;fe;n s](ﬁ; e*dtll)lz
the method of bisection. The number of 11;91‘&];;101_15 1'01 d u@peﬁl)nl q% e
8%0CI ' [i01 ¢« varied fr 9 al the beginning u at
associate function has varied from ¢ 8] g S0 ot e
end (for getting a difference between tW(_i sugce‘sstllve &Elﬁg\ﬁ?ﬂtlglthms
] -5), the cor ‘ficient ¢, having the se s git
than 10-%), the computed coefficie 1 0 y O s
as the exag;t cocfticient ¢, = 1.0320491. The even coeifhclent?nllimlzgdx‘i;&l
hed (vi b acy), ¢, — ¢, have heen co
shed (vis-a-vis the computer acecuracy), ¢; — ¢, lla\fe‘ i 6p by
errors less than 5 x 10-? with regard to the %XHOL solution, ¢,
e o 9. N ror of 10-7. oy W i
error of 8 x 10-% and ¢; with an err _ gl sl ek il
The values of the solution taken in nodal_ points @y = 1]13,_t (;11}9)(‘7_,
by the above two methods, with the corresponding errors, are t ]
ing :

| crror
] finite difference \?“1%{2 alternalive method o 104
1
0.
: 0.
0. t 0. O
(1) 0.242105 0.8 0234;(7)%2 o
s 0.412932 1.6 0.437232 ; :
3 0.632417 2.3 0.609579 2.
4 0.780453 3. 0.749833 5
5 0.896877 3.7 0. 82952 ) il
5 0.981464 4.4 Og‘gz%gg 2:
7 1.033911 5. 0. 999:8)77 R
8 1.053839 5. 0.

i vints @ 5 AT st symimetrical
The values on the other nodal PoOints a . - Wy aile almost symir d
their crrors being of the same order flt nmgnmi}l%l(laé et okt
ing t e s, the use of the 3 tive-metho
According to the above results, R AN Sty
i as 'rors with two orders of magnitu § Al
with % = 16 hag led to errors wit : ' inagl R Rt
the case of finite differences method. At the same itl:l]l(é 131:; ?) Fl}y -
: ‘ V G i 'h aANe [ g e} S ke >
caleulations has been smaller than that H_l.ﬂle case 01;' ,11 g Ul e
tral imethod, the solving of only one nonlinear equz} éiﬂ N the ", Some
supplementary iterations being a task much casu11 mf 100111:ac\7 Ng
a system of 15 nonlinear equations for the ({a(lﬁf (()j) (n?{) a(;'c(the a0y cal
1 ; i1 , W USe 0 com ne .
(b) In the evolution case, W B S
i iffer g N y method “for g,
sult ; i icit fi ferences Cranlk-Nicolson
results) the implicit finite dif g AL
and th)e explicit Fuler method for wa, . The corresponding sy L
] . . i
. A . N i o X ’HJ; — UL p
/”']ﬁl Qlljc-:-ll Q{;s+1 ’“:;;tll o ui‘—i-l —_21(-]; + Urk—1 1 “jk ]»+1 + fk7

ot o 23822 a2 2842 28 dx

| T walation of tho
which is linear with tridiagonal matrix, allows ‘Lhr.e (1}3 lxcrlzﬁugs Choosing
numerical solution at a new time level using _1ts }1)11(2)‘1313111 e i iéi reachea
] i - Shald ks tha » maximu 6
3 = =/32, 3x = 1/8 it remarks that the me :

at ¢ = 0.
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The alternative method using the Enler technique for equation
(21) S 1

21), i.e

, Le.,

ot M — uF
at =4, 3t

becomes npw an implicit method. In this Case, m = 1 leads to a contrac-
tion constant for iterations (20) of about 0.9, which implies a very slow
convergence. But the valne m — 2 leads o« 1/2 for a time step 8 =
= 7/32;,. n = 16.

The alternative method has been also used together with the predie-
tor-corrector method (23), the corrector being applied onl Yy onee, To get,
the predictor, we need about 12 jterations while {he correciions have
involved in (20) 1 —5 iterations. The vesults af different time levels (the
numerical values of the solution af, o =0, with the corresponding errorg
with réspect to the exact solution are :

xﬁ/tsz % ( finite difl‘crcncc] /Cligi,_, ]ﬂltornali\fe Zuler illf(lrs j)ll%(ill.l:acz;lf ,\?’1181_‘4
1 0.107132 0.9 0.097747 0.27 0.097908 —1.1
2 0. 212022 1.7 0.194213 0.88 0.194837 —2.5
3 0.313310 2.3 0.288539 1.6 0.289862 —4.2
4 +0.410377 2.7 0.379861 2.8 0.382071 —08.1
5 0.502842 3.1 0.467363 4.0 0.470582 —8.2
6 0.590110 3.5 0.550219 5.3 0.554546 —10.

S==—== ¥ =

&0 o

Going on with the numerical solving with new time steps up to
t = 2u (the length of a period), the error by using the predictor-corrector
method form — 2 § — 7/32 has an oscilating variation with 4 maximum
amplitude 2.7 x 10-*, When the period is over the error is 5.5 x 10t
by comparison to its beginning which confirm the stability of the method
with' those parameters,

While growing m to 3, 4, 6, 8 in order to acceleralo the convergence
of iterations (20), the phenomenon of the instability of the numerical
solutions is recorded, the step 8t — 7/32 heing now too large,

On the other hand, the Step 8 = w64, m = 3 leads to a contrac-
tion constant 4 ~ 1/3, the procedure becoming again stable and the
oseilations of the error have an amplitude less than 6.9 X 10-* while at;
the end of a period the total error does not exceed 1.25 X 10-% As we
could expeet, the diminishing of the step fime has Dheen Joined to the
growing up of m in order to ensure the upper houndness of the contrac-
tion constant less than 1/2 (which seems to he numerically convenient).

The growing of » did not Jead to some spectacular effects, the error
diminishing with only about 30%,. This shows that the most important
error source is the numerieal integration and not the space spectral dis-
netisation,

Retaking man y times the corrector (23),atm = 2, n = 16, 8t = 7/32
the stability of the method is kept up, the maximum of the error ampli-
tude being under 1.8 x 10-1.

-
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6. Tinal remarks

The alternative method seems to be a real way to improve the accu-
racy of the numerical solutions, to reduce the computing effort and it
could be easily combined with the spectral methods both for stationary
and nonstationary case. A detailed study of the stability of the method
and of the time step 3t dependence on m and » for different procedures of
temporary numerical integration will be the topic of a future work.

The authors thank prof. G. Labrosse from the University Paris-
Orsay for his helpful remarks and suggestions made while he conducted
the seminar of spectral methods at the University of Cluj-Napoca.
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