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1. Preliminaries. In what follows we consider M™ g compact m-di-
mensional smooth manifold without boundary (i.e. 9M = ©) and #( M)
the real algebra of all smooth real mappings defined on M. If fe #(M)
the set O[f] = {pe M :(df), = 0} is called the eritical set of f. Let us
denote by 7 ,.(M) = & (M) the set of all Morse functions f : M — R (for
more details see the papers [2], [3]). It is well known [5] (see also [8])
that &, (M) 0, i.e. there exists a Morse function defined on M. When
f e #,(M) the critical set (| f1is finite and let us consider u.(f) the number
of the critical points of f with the Morse index ky 0 < k<m, and p(f)=

= ﬁ we(f). It is clear that u(f) represents the cardinal number of the

k=0
o(f).
Define the Morse-Smale characteristic of the manitold M by
v(M) = min {u(f): feF (M) 1)
We also consider the numbers
V(M) = min {p(f): feF (M), k=0, m (2)

In the papers [2], [3] it is proved that the numbers Y(M), vi(M), k=0, m,
are differential invariants of M, i.e. if the compact manifolds M, N

are diffeomorphic then y(37) = y(¥) and Yi( M) = y,(N). Other properties
of these numbers are presented in the author’s papers [2 ], [3] and in
Rassias, G.M. [11], [12].

2. The main result. Because ™ is a compact manifold it results
that M has the homotopy type of a tinite CW-complex (see [5, Corollary
5.3]), therefore the singular homology groups H.(M ; Z), k =0, m ,
are tinitely generated (see [6, p. 94]). One obtains, for ke 7

HM;Z)~(Z @ .0 D)OZ,, &-..6 Z, ) (3)

'kb(k)

B" times,

where 8, = B.(M ; Z) represent the Betti numbers of M related to the
group (Z, ), i.e. Bu(M; 7Z) = rank H(M; 7).
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L), k=0, m,
Consider Hy(M ; F), k=0, n,
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the coefficients In L the Betti nutbers according to 1.
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2.2. Benmi . [OT'SE f

0, m (5)
1y, k=0, m
vl f) = (M), : |
e ak Morse inequalities and the definition
5 ‘ M and for any
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Using these relations
is exact.
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‘ » /) CR ‘,; e '
(1) el M) = Bl M 5 Z) b(k) + bk — 1),

m—1

the singular homology groups I?‘\.lt—}}
| By (M 1) = rank Hi(M; I) =
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4 manifold without
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(i) ¥(M) = BUMZ) + 2 &,

' ) — % By (M3 Z) -

e ?;h . the following important result of ?{nézler: ::;1
i i 3 N [ g . ._ - T 1% NeRes

PMQI!}' (1)[1\17? ?;tl]l (1;;%9'?, p. 43]): under the above hypo

[15] (see also [L4]

1

: fy = B 5 Z) 4 Bk
; et Morse funetion f and !{RU] ol e tained.
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B gﬁ'E rzmbnl %%m(-mut the definition (?f “:{;11\1(;1]\ Morse function
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On the other hand 1
b e
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Proof. Using the result of [2, Theorem 3.1] one obtains that on M
there exists a @-perfect Morse function if and only it (M) = (M ; @).
From [2, Lemma 3.2] it follows B(M ; Z7) = P 5 @), k =0, m. Ta-
king into account Theorem 2.3 (ii) one obtains that M hag Q-perfect Morse

m—1
functions if and only if 2 Y, 0(k) 4 b(m) =0, ie. if and only if b(k) =
A=0 y

=0, k=0, m,

3. An_applieation to the Lusternik-Sehnirehnann category. TFirst
we notice that we can obtain an extension of Theorem 2.3 to compact
manifold, not necessary simply-connected. Let M™ Dbe a compact mani-
fold without boundary, m > 6 and let p: M — M De auniversal covering
manifold of M. Sharko, V.V. [13] (see also [7, p. 46]) showed that if
M) Z ®..0FZ (s times), s > 0 then on M there exists an exact
Morse funetion f with

s 8 — s+1 s 1 1
mlf) = ¥ () P05 Z) + 3 (7 )b(k ti-s—1) (6
=0 1] o\ 1
for keg.
Using this result and an analogous proof as in Theorem 2.3 one
obtains :

3.1. Theorem. If M™ 4s a compact manifold without boundary with
m=6 and m(M)~Z @ ... Z (s limes), s> 0, then

() w(M) =y, (;)BW-_S(M; Z) + S}BI(S—:I)I)(MF@'— s 1), k=0 m

iZo

M i s (8 - | m s+1 S—f—l ) .
(1) (M) = ¥ ( ¥ ( ) Bry s ; z>) + 3 (); ( _ )b(k+@— 5 — 1))
k=0 1\ j=0\) k=0 \{=0 ?
where p : M — I ig any universal covering manifold of M.
Recall that the Lusternik- Schnirelmann category of M is the smallest

numbper » with the property that M — U4, where 4, are closed con-

g =1
tractible subsets of M. Denote n — cat(af). The number cat( M) represents
an other invariant of M (see [1, Proposition 3.5.87) and there exisi, various
methods to obtain bounds for eat( M) usin g the cohomology groups H¥ M 1M,
s = 0, m, or the dimension of M (see [1, p. 70]). In what follows we
shall obtain an upper bound of cat(M) in terms of Be(DT 5 Z), b(k),
k=0, m.

3.2. Corclary. Let M™ be a compact manifold without boundary with
m26and (M) >Z ®...0 Z (s limes), s > 0. Then

cat(in < 3 (5, (5 ) evs-at 2))+ 5 (}E(sjl) Wi — s —1))

‘J h
k=0 \j=o Protr ) W

where p: M — M is any universal covering manifold of M.
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Proof. For a Morse function f e #,(M), u(f) = i wx(f) represents

5=0

the cardinal number of the critical set O[f]. According to the Lusternik-
Schnirelmann multiplicity theorem (see [1, Theorem 3.5.12] and [10,
Theorem 9.2.9.]) it follows that w(f) > cat(M). Then v(M)=min {p(f) :
fe F, (M)} > cat (M). Using Theorem 3.1 (ii) the desired inequality is
obtained.
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