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1. Introduection

Consider a point mass orbiting an attractive centre at distance r
under the influence of two forces : the Newtonian attraction and a per-
turbing force depending on a small parameter o. Let us describe the mo-
tion in terms of classic Keplerian orbital elements by means of
Newton-Euler equations (e.g. [4])

dp/du = 2(Z[u)r3 1T,
dQ/dw = (Z/u)r* BW [(pD),
difdu = (Z/u)rsAW|p,

(1) dg/dw = (Z[u)(r*kBCW [(pD) 4 1*T((q + A)fp + 4) + 1°BS),
dk/du = (Z[u)(—r3¢ BOW (pD) - r2T(r(k 4+ B)/p + B) — r248)
dtfdu = Zr(up)-1r,

where Z = (1 — »20Q/( up) )~ = gravitational parameter of the dyna-
mic system, p = semilatus rectum, £ = longitude of ascending node,
¢ = inclination (0 = cos 4, D = sin 1), § = € o8 w, k = ¢ sin w(¢ = eccen-
tricity, @ = argument of pericentre), v = argument of latitude (4 == cos U,
B =gsin u), 8, T, W = radial, transverse, and binormal compornents of
the perturbing acceleration, respectively.,
The time interval defined by
2m
(2) Ty = S(dt/du) du

0]

is called nodal period and constitutes one of the most important para-
meters of the perturbed motion described by (1). '

An analytical estimate of Tq to first order in ¢ wag given in [8]
for the case of a point mass motion in the attraction field of a rotation
level ellipsoid. The method was extended to various perturbing factors
in [1], [2], [3], [5], [6], [7], ete. (for a brief survey see [4]). A second
order (in ¢). approximation of T, which can be used to orbits of arbi-
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trary subunitary eccentricity, was given in [4]. In this paper we propose
a much improved estimate of Tq, to any order in o, for the case when
the perturbing force acts radially.

2. Basic equations

Since the perturbing force is radial, we have 7 =0, W = 0, and
as a direct sequel of the second equation (1), Z = 1. Also, using the orbit
equation in polar eoordinates given by r = p/(1 + e cos v), where » —
=% — o is the true anomaly, we have

(3) r=p{l + g4 4 kB)-".
So, equations (1) reduce to
dp/dw = 0, dQ/dw = 0, dijdu = 0,
dg/du = p2*BS( 4 ¢A 4 kB)-?,
(4) dk/du = —p?1AS(1 + gA 4 kB)-2,
dtfdu = p32u-121 4 g4 + hB)-2,
where the expression of § remaing unspecified.

By (4), there follows immediately p = Doy © = Qy, 4 = 4, (the per-
turbed orbit is planar and of constant semilatus rectum), where subsecripts
refer to the initial value w = u,, Also, supposing that ¢ and % undergo
small changes (Aq =¢q — ¢, Ak =k — ko) over time intervals short
enough, and integrating the fourth and fifth equations (4) by successive

approximations, we get the changes of gand & in the interval [uy, ulto first
order in ¢ (hidden into §)

Ag =p%p.-1s BS(L + g4 -+ kyB)~2du,

iy

(5) U v
Al = — p(z,prlgAS(l 1 ¢4 + yB)- du.

As to the nodal period, let us denote
(6) flay &5 w) = g1 + g4 + LB)-.
So, by (6) and the last equation (4), (2) becomes

27

(1) To = Sf(q, ks ) du.

To find T we have to express the integrand of (7) in terms of w only.
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3. Auxiliary results

.. Before treating (7), let us establish some preliminary results which
will be helpful for expressing f(q, k; w) as funetion onl'y of .’

Let 2 be a real variable, let M, N be functions which do not depend

on z, and let 1w, s be natural numbers. The following relation holds :

9(M + Na)-s (s +w —1)!
B e = (=1 A s W
(8) = (—1) G D1 M+ Naj-epe,

The prootf is immediate by induction. For w — 1 we have
(M + Ng)-*
aw

Suppose that (8) holds for w — m, and calculate the derivative for
W =m -+ 1; we have

= —8(M + Na)~s—1 ¥,

AR A N 9 [ et Nayr
Jam+1 o aw”‘\ J -

__0 [(—1)"' (s +m —1)!
d (s —1)!

— (—1ywht (s 4 m)!
(s —1)!

(]][ + Z\Tm)_s—mNmJ —

&

(_le + _Z\T(,U) —y—n— I_Z\Tm—l— 1,

hence_ (8) is true.
Let now ¢, & be real independent variables, let A, B be functions

which do not depend on ¢, %, and let , j be natural numbers, j <
The following relation hol(is :’ »J ; y ) S .

(L + Ag + Bl)-> . .
O i = (C1Mn ) (L o+ g1 Bryrege-ipy

To prove this relation, we write

ML+ Ag-+ BE)= o [ 1+ Ag 4 Bi)-2 o’
g [ e | ST ! }
agn—Ja/cf ak:’ 8(111—3' ] ak.’ ae 12

where I,_; abbreviates the expression in square brackets. Putiin -

' , : . g M=
1+ B, N =4, 2 = 9 § =2, w=mn —j, one sees that F,_;is of the
form g»( M + Naz)=*[ga™, so, by (8)

"1 + Aq + Bl)-2
agn—jakf

o
— # [(—1)"~i(n —Jj+ 1)1+ Aq + Bk,)—”+j—2An_j] _

. Y
=V )L 1 dg By —

= (=1)"~n —j 4- 1)1 4"-ig,
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oM 4 Nz)-*/oz®. Applying once again (8), we get
(1 4+ Aq 1 Bk)-?
aqn—j aki
(n 4+ 1)!
(n—j+ 1)1
—(—1)"n 4+ 1)1 (1 + Ag 4 Bk)y-24"—B,

and relation (9) is proved.

(1 -+ 4q+ Bk)—"-*B!=

= (—1)—d(n — j 4 1)1 A—i(—1)]

4. Nodal period

Being now able to determine the nodal period, we shall express

the main result of this paper in the form of _ _
Theorem 1. If the perturbed molion of a point mass 1n an aliractive
field is described by equations (4), then the nodal period corresponding to

this molion ts given by

To =g~ 3, (—1)(n+ 1) \ (L + @A + ko B) =% AAg + BAK)du,

n=0
0

(10) | |

y i - eX ]t y b give 6) on the
Proof. Let us Taylor-expand the function f given by ( 0
hyperSurfa{;e H = H(q,, k,; w) with respect to the small quantities

Ag, Ak; we have
SN sl J J \",
/ fOTEn![(qaq_}_ ok .

n=1
= | — ¥ OL(AQ)» AR} —————
ot 3 r B Ohbar )[ prapi L

where the subscript ‘07 signifies that in ’_t,he resulting expresTsmnSt \;re
put ¢ = qo, k& = ky, and let u vary. Taking into account (6), we obtain

: © 1 A T g + Ag+ BR)® ]
f=hot e 3 o % 0ia) ,(M),[ e ;

or, resorting to (9) and performing the calenlations :

f=fo+ P § (—1)(n1)(1 +-go A+ Ko B) -2 Y, GA(ABI(BAT) =

fn=1 7

= fo -+ pPp Y2 ;j (—1)(n - 1)1 & ¢od + koB)="~AAq + BAk)" =

n=1

— PP (<1 + 1)L - g - koB)T(AAg + BAL)".

n=0

=
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Replacing now f in (7), we get the expression (10), and the theorem is
proved.

Remark 1. Formula (10) provides the nodal period to any order
in ¢ (hidden into Ag, Ak, given by (5), which are of first order in ). Of
course, Ag, Ak can be determined with a higher accuracy in o, but this
entails complications in the effective caleulations,

Remark 2. To use effectively (10), expression (1 4 q,4 |- kyB)~,
which appears under integrals in (5) and ( 10), and ean also appear from
S when this one is analytically specified for a concrete case, must be
expanded in power series of ¢, k,. So, truneating the series, the result
is obtained with the corresponding accuracy in eccentricity (determined
by qy, %), besides the accuracy of any order in .

Remark 3. To obtain separately the perturbation of a certain order,
it is sufficient to assign the corresponding value to » in formula (10).

Remark 4. The conditions of Theorem 1 are fulfilled in many con-
crete situations. Among such situations we mention some belonging
to astronomy : motion around sources whose lnminosity changes, orbits
in anisotropic’ radiation fields, motions in certain post-Newtonian gra-
vitational fields, theory of gravitational constant anisotropy, artilicial
satellite motion under the influence of certain perturbing factors, ete.
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