SELECTIONS WITH VALUES BERNSTEIN POLYNOMIALS ASSOCIATED TO THE EXTENSION OPERATOR FOR LIPSCHITZ FUNCTIONS

COSTICĂ MUSTĂŢA (Cluj-Napoca) agiere of June pess, but had been generally property and and

1. Let (X, d) be a metric space and Y a subset of X, containing at least two points. A function $f: Y \to R$ is called Lipschitz if there exists a constant $K_{\mathcal{L}}(f) \geqslant 0$ such that

(1)
$$|f(x) - f(y)| \leq K_Y(f) \cdot d(x, y),$$
 for all $x, y \in Y$.

Let

(2) Lip
$$Y = \{f | f : Y \to R, f \text{ is Lipschitz on } Y\}.$$

Equipped with the pointwise operations of addition and multiplication by real scalars, Lip Y is a real linear space. The smallest constant $K_{r}(f)$ verifying (1) is denoted by $||f||_{r}$ and is called the Lipschitz norm of f.

For Y = X one obtains the linear space Lip X and for $F \in \text{Lip } X$, $||F||_X$ is the smallest Lipschitz constant for F (on X).

Obviously that for $F \in \text{Lip } X$ and $Y \subset X$, $F|_Y \in \text{Lip } Y$ and $\|F|_Y\|_Y \le$ $\leqslant \|F\|_{\mathcal{X}^{*}(\mathbb{R}^{n})}$, which is the second finite of the second field F

Let $Y \subseteq X$ and $f \in \text{Lip } Y$. A function $F \in \text{Lip } X$ is called norm preserving Lipschitz extension of f if

(3)
$$F|_{\mathcal{Y}} = f \text{ and } \|F\|_{\mathcal{X}} = \|f\|_{\mathcal{Y}}.$$
 Let

(4)
$$E(f) = \{ F \in \text{Lip } X : F|_{Y} = f \text{ and } ||F||_{X} = ||f||_{Y} \}$$

be the set of all norm preserving Lipschitz extensions of $f \in \text{Lip } Y$.

By a result of Mc Shane [5], every $f \in \text{Lip } Y$ has a least one norm preserving extension $F \in \text{Lip } X$, i.e. $E(f) \neq \emptyset$ for every $f \in \text{Lip } Y$.

Since for every constant function $c \in \text{Lip } Y$, $\|c\|_Y = 0$, it follows that the "norm" $\|\cdot\|_Y$ is only a seminorm on Lip Y. In order to obtain a genuine norm, fix a point $x_0 \in Y$ and let

(5)
$$\operatorname{Lip}_{0} Y = \{ f \in \operatorname{Lip} Y : f(x_{0}) = 0 \}.$$

Then $\| \|_{Y}$ is a norm on $\operatorname{Lip}_{0}Y$ and $\operatorname{Lip}_{0}Y$ is a Banach space with respect to this norm.

Then, by the above quoted result of Mc Shane, one obtains:

Theorem 1. Let (X, d) be a metric space, x_0 a fixed point in X and Y a subset of X containing x_0 . Then for every $f \in \text{Lip}_0 Y$ there exists $F \in \text{Lip}_{o}X$ such that $F|_{Y} = f$ and $||F||_{X} = ||f||_{Y}$.

It is easily seen (see [3], [5]) that the following functions:

$$F_1(x) = \sup\{f(y) - \|f\|_Y \cdot d(x, y) : y \in Y\}, \quad x \in X$$

and (6)

208

$$F_2(x) = \inf\{f(y) + \|f\|_{Y} \cdot d(x, y) : y \in Y\}, x \in X$$

are two norm preserving Lipschitz extension of $f \in \text{Lip}_0 Y$. The set $E(f) \subset \text{Lip}_{0}X$ is nonempty, convex and bounded, such that the extension operator

(7)
$$E: \operatorname{Lip}_0 Y \to 2^{\operatorname{Lip}_0 X}$$
 is well defined and multivalued.

The problem of the existence of a selection of the extension operator E (i.e. a function $e: \text{Lip}_{0} Y \to \text{Lip}_{0} X$ such that $e(f) \in E(f)$, for all $f \in \operatorname{Lip}_0 Y$) which is linear and continuous was considered in [9].

In the particular case X = R and $Y = [a, b], x_0 \in Y$, a linear and continuous selection e of E can be given explicitly (see [9]).

2. Suppose X is a normed space and $Y \subset X$, $x_0 \in Y$. In this case there exist functions in E(f) which preserve some properties of f such as starshapedness or convexity (in these case Y is supposed to be a starshaped, respectively a convex subset of X and $x_0 = 0$ (see [2], [6]). A natural question is to give explicit selections, with the values preserving some properties of the function f and to study their linearity and continuity. The land and a second tinuity and a second of the second of the

In the following we shall present an example of a homogeneous and continuous selection having values Bernstein polynomials.

Let X = [0,1], $Y = \{0,1\}$, $x_0 = 0$ and d(x, y) = |x - y|. In this case

$$\operatorname{Lip}_{0}Y = \operatorname{Lip}_{0}\{0,1\} = \{f : \{0,1\} \to R, \ f(0) = 0\}$$

(8)and

$$\operatorname{Lip}_0 X = \operatorname{Lip}_0 \ [0,1] = \{F : [0,1] \to R, \ F(0) = 0,$$

$$F \text{ is Lipschitz on } [0,1] \}$$

For $f \in \text{Lip}_0 Y$ we have $||f||_Y = |f(1)|$ and

(9)
$$||F||_X = \sup\{|F(x) - F(y)|/|x - y| : x, y \in [0,1], x \neq y\}.$$
 for $F \in \text{Lip}_0 X$.

In this case E is single-valued, namely $E(f) = \{F\}$ where F(x) = $= f(1)x, x \in [0,1]$ and the following result hold:

Theorem 2. The application $E: \text{Lip}_0 Y \to \text{Lip}_0 X$, where $E(f) = \{F\}$ with F(x) = f(1)x, $x \in [0,1]$ is linear and continuous.

Proof. The functions F_1 and F_2 given by (6) are equals and $F_1(x) =$ $=F_2(x)=f(1)x,\ x\in[0,1].$ In [9, Th. 4 and Corollary 5] it was proved that $c(f) = (1/2)(F_1 + F_2)$ is a linear and continuous selection for E, so that e(f) = E(f) is linear and continuous.

Remark 1. It is well known (see [1]) that for $F \in \text{Lip}_0[0,1]$ the Bernstein polynomial of degree $n(n \ge 1)$ given by

(10)
$$B_n(F; x) = \sum_{k=0}^n \binom{n}{k} F\left(\frac{k}{n}\right) x^k (1-x)^{n-k}, \quad x \in [0,1]$$

is Lipschitz and $||B_n(F; \cdot)||_X \leq ||F||_X$. Because $B_n(F; 0) = F(0) = f(0)$ and $B_n(F; 1) = F(1) = f(1)$ for every $F \in E(f)$, it follows that $B_n(F; \cdot) \in E(f)$, for every $f \in \text{Lip}_0 Y$. In this case $B_n(F; x) = f(1)x$, for all $n \in \mathbb{N}$, $n \geqslant 1$, so that the application

$$(11) f \mapsto B_n(F;.) = E(f) = B_1(F;.)$$

is linear and continuous. Therefore, in this case, the extension operator $E: \operatorname{Lip}_{0}Y \to 2^{\operatorname{Lip}_{0}X}$, admits a linear and continuous selection with values Bernstein polynomials (of a fixed, but arbitrary, degree n).

It we are looking for a Lipschitz extension with a greater Lipschitz constant $\alpha \| \|_{\mathbb{F}}$, where $\alpha > 1$ is fixed, then the extension operator denoted by E_{α} , will be multivalued.

From Theorem 2 one obtains the following corollary:

Corollary 1. For every $f \in \text{Lip}_0 Y$ there exists $F \in \text{Lip}_0 X$ such that

(12)
$$F|_{Y} = f \text{ and } ||F||_{X} = \alpha |f(1)| = \alpha ||f||_{Y}.$$

Proof. It is easy to verify that the functions

$$\overline{F}_{1}(x) = \max\{f(y) - \alpha | f(1) | | x - y | : y \in \{0,1\}\}$$

(13)

$$\bar{F}_2(x) = \min\{f(y) + \alpha | f(1) | |x - y| : y \in \{0, 1\}\}$$

 $x \in [0,1]$, have the properties

$$\overline{F}_1(0) = \overline{F}_2(0) = f(0) = 0, \ \overline{F}_1(1) = \overline{F}_2(1) = f(1)$$

$$\|ar{F}_1\|_{\mathcal{X}}=lpha|f(1)|=\|ar{F}_2\|_{\mathcal{X}}.$$

Let

(14)
$$E(f) = \{ \overline{F} \in \operatorname{Lip}_0 X : \overline{F}|_{\mathcal{V}} = f, \ \|\overline{F}\|_{\mathcal{X}} \leqslant \alpha |f(1)| \}.$$

denote the set of the Lipschitz extensions of the function f which preserve the norm $\alpha \|f\|_{\mathcal{V}}$. Then \overline{F}_1 , $\overline{F}_2 \in E_{\alpha}(f)$ and $\overline{F}_1(x) \neq \overline{F}_2(x)$ for all $x \in (0,1)$, so that the extension operator

$$E_{\alpha}: \mathrm{Lip}_{0}Y \to 2^{\mathrm{Lip}_{0}X}$$

is well defined and multivalued.

Concerning this operator E_{α} one can prove the following theorem: Theorem 3. a) The operator E_{α} admits a homogeneous and continuous selection;

b) For every $n \in N$, $n \geqslant 1$, the operator E_{α} admits a homogeneous and continuous selection with values Bernstein polynomials of degree n.

Proof. a) Consider the following two selections e_1 , e_2 defined by

(15)
$$e_1(f) = \overline{F}_1 \text{ and } e_2(f) = \overline{F}_2, f \in \text{Lip}_0 Y,$$

where

$$\overline{F}_1(x) = \max\{-\alpha | f(1) | x; f(1) - \alpha | f(1) | (1-x), x \in [0,1]$$

(16) and

$$\overline{F}_2(x) = \min\{\alpha | f(1) | x; f(1) + \alpha | f(1) | (1-x)\}, x \in [0,1].$$

Then, for $\lambda \geq 0$, $e_1(\lambda f) = \lambda e_1(f)$ and $e_2(\lambda f) = \lambda e_2(f)$. By the definition of e_1 and e_2 , $e_1(f) = -e_2(-f)$, implying that the selection

(17)
$$e(f) = (1/2)(e_1(f) + e_2(f))$$

is homogeneous, i.e.

$$e(\lambda f) = \lambda e(f), \ \lambda \in R, \ f \in \text{Lip}_0 Y.$$

Now, we show that e_1 , e_2 are continuous selections which will imply the continuity of e, too.

Let $\varepsilon>0$ and $0<\delta<\varepsilon$. We shall show that for $f,g\in \operatorname{Lip}_0Y$, $\alpha|f(1)-g(1)|<\delta$ implies $\|\overline{F}_1-\overline{G}_1\|_X<\varepsilon$ where \overline{F}_1 is defined by (16) and

$$\bar{G}_1(x) = \max\{-\alpha | g(1) | x; \ g(1) - \alpha | g(1) | (1-x)\}, \ x \in [0,1].$$

We have to consider the following cases:

$$1^{\circ} f(1) > 0$$
, $g(1) > 0$.

In this case

$$egin{aligned} ar{F}_1(x) &- ar{G}_1(x) = lpha[g(1) - f(1)]x, & ext{for } x \in \left[0, \ \frac{\alpha - 1}{2\alpha}
ight], \ &= f(1) - g(1) - lpha[f(1) - g(1)](1 - x), & ext{for } x \in \left(\frac{\alpha - 1}{2\alpha}, 1
ight]. \end{aligned}$$

implying $\|\overline{F}_1 - \overline{G}_1\|_X = \alpha |f(1) - g(1)| < \delta < \varepsilon$.

$$2^{\circ} f(1) < 0, g(1) < 0.$$

In this case

$$\begin{split} \overline{F}_1(x) - \overline{G}_1(x) &= \alpha [\,|f(1)\,| - |g(1)\,|\,] \; x, \; \text{ for } \; x \in \left[\,0\,,\; \frac{\alpha + 1}{2\,\alpha}\,\right] = \\ &= f(1) \, - g(1) \, - \, \alpha [\,|f(1)\,| - |g(1)\,|\,] (1 - x), \; \text{for } \; x \in \left(\,\frac{\alpha + 1}{2\,\alpha}\,,\,1\,\right] \end{split}$$

implying $\|\bar{F}_1 - \bar{G}_1\|_{X} = \alpha ||f(1)| - |g(1)|| \le \alpha |f(1) - g(1)| < \delta < \epsilon$. $3^{\circ} f(1) > 0, g(1) < 0 \text{ (or } f(1) < 0 \text{ and } g(1) > 0).$

In this case

$$\begin{split} \overline{F}_1(x) - \overline{G}_1(x) &= \alpha [|g(1)| - |f(1)|] \, x, \text{ for } x \in \left[0, \, \frac{\alpha - 1}{2\alpha} \right], \\ &= f(1) - \alpha f(1) + \alpha [\, |g(1)| - f(1)] \cdot x, \text{ for } x \in \left[\frac{\alpha - 1}{2\alpha}, \, \frac{\alpha + 1}{2\alpha} \right], \\ &= f(1) - g(1) + \alpha [\, |g(1)| - f(1)] + \alpha [\, f(1) - |g(1)|] x, \end{split}$$
 for $x \in \left[\frac{\alpha + 1}{2\alpha}, \, 1 \right],$

implying $\| \overline{F}_1 - \overline{G}_1 \|_{\mathcal{X}} = \alpha |f(1) - |g(1)|| \le \alpha |f(1) - g(1)| < \delta < \varepsilon$ $4^{\circ} f(1) = 0 \text{ and } g(1) \neq 0 \text{ (or } f(1) \neq 0 \text{ and } g(1) = 0)$

In this case $\overline{F}_1(x)=0$, $x\in [0,1]$ and $\|\overline{F}_1-\overline{G}_1\|_X=\|\overline{G}_1\|_X=$

It follows that e_1 is a continuous selections. In a similar way one can show the continuity of the selection, e_2 , implying the continuity of the selection e.

b) Let $n \in \mathbb{N}$, $n \ge 1$, be a fixed and for $f \in \operatorname{Lip}_0 Y$ let $B_n(e(f); .)$ be the Bernstein operator associated to the function e(f):

(18)
$$B_n(e(f); x) = \sum_{k=0}^n \binom{n}{k} \cdot e(f) \left(\frac{k}{n}\right) \cdot x^k (1-x)^{n-k}, \quad x \in [0,1].$$

By the result from [1] it follows

$$||B_n(e(f);.)||_X \le ||e(f)||_X = \alpha |f(1)|.$$

Since $B_n(e(f); 0) = e(f)(0) = f(0) = 0$ and $B_n(e(f); 1) = e(f)(1) = f(1)$, it follows that $B_n(e(f); \cdot) \in E_n(f)$.

Define the selection

$$b_n: \text{Lip}_0\{0,1\} \to \text{Lip}_0[0,1]$$

by

(19)
$$b_n(f) = B_n(e(f);.)$$

As the Bernstein operator is linear it follows that for $\lambda \in \mathbb{R}$, $b_n(\lambda f) = B_n(e(\lambda f);.) = B_n(\lambda e(f);.) = \lambda B_n(e(f);.) = \lambda b_n(f)$, showing that b_n is a homogeneous selection.

213

 $\begin{array}{c} \text{If } f, \ g \in \operatorname{Lip}_0\{0,1\} \text{ are such that } \alpha \left| f(1) - g(1) \right| < \delta < \varepsilon \text{ then } \\ \| \bar{F}_1 - \bar{G}_1 \|_{\mathcal{X}} < \varepsilon \text{ and } \| \bar{F}_2 - \bar{G}_2 \|_{\mathcal{X}} < \varepsilon, \text{ so that } \end{array}$

$$\begin{split} \|b_{\mathbf{n}}(f) - b_{\mathbf{n}}(g)\|_{\mathcal{X}} &= \|B_{\mathbf{n}}(e(f)\,;.) - B_{\mathbf{n}}(e(g)\,;.)\|_{\mathcal{X}} = \\ &= (1/2) \|B_{\mathbf{n}}(F_1 - G_1) + B_{\mathbf{n}}(F_2 - G_2)\|_{\mathcal{X}} \leqslant \\ &\leqslant (1/2) \big[\, \|B_{\mathbf{n}}(F_1 - G_1)\|_{\mathcal{X}} + \|B_{\mathbf{n}}(F_2 - G_2)\|_{\mathcal{X}} \big] \leqslant \\ &\leqslant (1/2) \, \|\, \overline{F}_1 - \overline{G}_1\|_{\mathcal{X}} + (1/2) \, \|\, \overline{F}_2 - \overline{G}_2\|_{\mathcal{X}} < \varepsilon, \end{split}$$

showing that the selection b_n is also continuous.

Remark 2. (a) Let C^+ be the cone of positive functions in $\operatorname{Lip}_0\{0,1\}$ and C- the cone of negative functions, i.e.

(20)
$$C^+ = \{ f \in \operatorname{Lip}_0\{0,1\} : f(1) > 0 \},$$

$$C^- = \{ f \in \operatorname{Lip}_0\{0,1\} : f(1) < 0 \}.$$

Then $e_1(C^-) \subseteq K^-$, where $K^- = \{F \in \operatorname{Lip}_0[0,1], F \text{ is negative}\}$, and $e_2(C^+) \subseteq K^+$, where $K^+ = \{F \in \text{Lip}_0[0,1], F \text{ is positive}\}.$

(21)
$$E_{\alpha}^{-}: C^{-} \to 2^{K^{-}}, E_{\alpha}^{+}: C^{+} \to 2^{K^{+}}$$

be the restrictions of E_{α} to the cones C^{-} and C^{+} , respectively.

Obviously that $E_{\alpha}^{-}(f) \neq \emptyset$, for every $f \in C^{-}$ (the set $E_{\alpha}^{-}(f)$ contains at least the function $\overline{F}_1 \in K^-$) and $E_{\alpha}^+(f) \neq \emptyset$, for every $f \in C^+$ (the set $E_{\alpha}^{+}(f)$ contains at least the function $\overline{F}_{2} \in K^{+}$).

We have the following corollary

Corollary 2. a) The selection $e_1^-(f) = \overline{F}_1, f \in C^-,$ associated to the operator E_{α} is continuous, positively homogeneous and additive;

b) The selection $e_2^+(f) = \overline{F}_2$, $f \in C^+$, associated to the operator E_x^+ is continuous, positively homogeneous and additive;

c) The selections $b_n^-(f) = B_n(e_1^-(f);.)$ and $b_n^+(f) = B_n(e_2^+(f);.)$ are

continuous, positively homogeneous and additive.

Proof. The continuity and the positive homogeneity of the selections e_1^- and e_2^+ follow from the proofs of Cases 1° and 2° of Theorem 3. If f(1) < 0 and g(1) < 0 then

$$egin{aligned} \overline{F}_1(x) &= - \left| lpha \left| f(1) \right| x, & ext{for} \quad x \in \left[0, \left| rac{lpha+1}{2\,lpha}
ight], \ \\ &= f(1) - \left| lpha \left| f(1) \right| (1-x), & ext{for} \quad x \in \left(rac{lpha+1}{2\,lpha}, 1
ight] \end{aligned}$$

and

$$egin{aligned} ar{G}_1(x) &= -lpha |g(1)|x, & ext{for} \quad x \in \left[0, \, \, rac{lpha+1}{2lpha}
ight] \ &= g(1) - lpha |g(1)|(1-x), & ext{for} \quad x \in \left(rac{lpha+1}{2lpha}, \, 1
ight] \end{aligned}$$

implying $e_1^-(f+g) = e_1^-(f) + e_1^-(g)$

Similarly for f(1) > 0 and g(1) > 0 one obtains $e_2^+(f+g) =$ $= e_2^+(f) + e_2^+(g).$

Assertion c) follows from the fact that the Bernstein operator is linear and positive.

(b) Remark that the selections e_1^- and e_1^+ are monotonically increasing with respect to the pointwise order, i.e. $0 < f(1) \le g(1)$ implies $\overline{F}_2(x) \le f(1)$ $\leqslant \overline{G}_2(x), x \in [0,1] \text{ and } 0 > f(1) > g(1) \text{ implies } \overline{F}_1(x) \geqslant \overline{G}_1(x), x \in [0,1]$ Furthermore, $e_1^-(f)$ is a convex function for $f \in C^-$ and $e_2^+(f)$ is a concave function for $f \in C^+$.

3. Selections associated to the operator of metric projection

Let Y^{\perp} be the anihilator of the set $Y = \{0,1\}$ in $\operatorname{Lip}_0[0,1]$, i.e.

(22)
$$Y^{\perp} = \{G \in \text{Lip}_{0}[0,1] : G(0) = G(1) = 0\}$$

Then Y^{\perp} is a closed ideal in Lip_0 [0,1]. For $F \in \operatorname{Lip}_0[0,1]$ let

(23)
$$d(F, Y^{\perp}) = \inf\{\|F - G\|_{\mathbf{X}} : G \in Y^{\perp}\}.$$

An element $G_0 \in Y^{\perp}$ for which the infimum in (23) is attained is called the nearest point to F in Y^{\perp} . Let

$$(24) P_{\underline{r}^{\perp}} \colon \mathrm{Lip}_{0}[0,1] \to 2^{\underline{r}^{\perp}}$$

be the operator of metric projection on Y^{\perp} , defined by

$$P_{_{Y^{\perp}}}\!(F) = \{G \in Y^{\perp} \colon \|F - G\|_{X} = d(F, Y^{\perp})\},$$

for all $F \in \text{Lip}_0[0,1]$.

 Y^{\perp} is called proximinal (resp. Chebyshev) if for each $F \in \operatorname{Lip}_0[0,1]$ the set $P_{\nu^{\perp}}(F)$ is nonempty (resp. a singleton).

The following proposition holds:

Proposition 1. a) The formula

(25)
$$d(F, Y^{\perp}) = |F(1)|.$$

is valid for every $F \in \text{Lip}_0[0,1]$. In particular Y^{\perp} is a proximinal subspace

b) If $G \in P_{y^{\perp}}(F)$ then G = F - H, where $H \in E_{\alpha}(F|_{Y})$ is such that $||H||_{X} = |F(1)|$:

c) There holds the equality:

(26)
$$d(F, Y^{\perp}) = d(F, F - E_{\alpha}(F|_{Y})),$$

where $F - E_{\alpha}(F|_{Y}) = \{F - H : H \in E_{\alpha}(F|_{Y})\}, F \in \text{Lip}_{0}[0,1];$ d) The equality

(27)
$$\sup\{\|F - G\|_X : G \in F - E_{\alpha}(F|_Y)\} = \alpha |F(1)|,$$

holds for every $F \in \text{Lip}_0$ [0,1].

Proof. a) Let $F \in \text{Lip}_0[0,1]$. Then for every $G \in Y^{\perp}$ one has |F(1)| = $=|F(1)-G(1)| \leq ||F-G||_{X}$. Taking the infimum with respect to $G \in Y^{\perp}$ one obtains

$$|F(1)| \leqslant d(F, Y^{\perp}).$$

Let $G_0(x) = F(x) - F(1)x$, $x \in [0, 1]$. It follows that $G_0 \in Y^{\perp}(G_0(0)) = 0$ $=G_0(1)$ and $\|F-G_0\|_X=|F(1)|$ so that $\|F-G_0\|_X=d(F, Y^{\perp}).$ This shows that Y^{\perp} is a proximinal subspace of $\text{Lip}_{0}[0,1]$.

b) If $G \in P_{-1}(F)$, then

$$\|F - G\|_{X} = d(F, |Y^{\perp}|) = |F(1)| \leqslant \alpha |F(1)|,$$

214

$$(F-G)|_{Y}=F|_{Y},$$

showing that $F - G \in E_x(F|_Y)$. It follows that there exists H in $E_{x}(F|_{Y})$ such that $F - G = \hat{H}$ and $||H||_{X} = ||F - G||_{X} = |F(1)|$.

- e) Follows from a) and b).
- d) For every $G \in F E_x(F|_y)$ we have

$$||F - G||_X = ||F - (F - H)||_X = ||H||_X \le \alpha |F(1)|,$$

where $H \in E_{\alpha}(F|_{Y})$.

Taking the supremum with respect to $G \in F - E_z(F|_F)$ we find

$$\sup\{\|F - G\|_X : G \in F - E_a(F|_Y)\} \leqslant \alpha |F(1)|.$$

Let

$$G_1(x) = F(x) - \max\{-\alpha | F(1) | x; F(1) - \alpha | F(1) | (1-x)\},$$

and

$$G_2(x) = F(x) - \min\{\alpha | F(1) | x; F(1) + \alpha | F(1) | (1 - x)\},$$

 $x \in [0,1].$

Obviously that G_1 , $G_2 \in F - E_2(F|_Y)$ and,

$$||F - G_1||_X = ||F - G_2||_X = \alpha |F(1)|,$$

proving the assertion d).

Remark 3. By Proposition 1 it follows that the nearest points to $F \in \operatorname{Lip}_0[0,1]$ in Y^{\perp} are the functions $G \in F - E_{\alpha}(F|_{V}) \subset Y^{\perp}$, G = F - Hwith $H \in E_a(F|_V)$ of minimal Lipschitz norm and the farthest points for F in $F - E_{\alpha}(F|_{Y}) \subset Y^{\perp}$ are the functions G = F - H, with $H \in \mathcal{E}_{\alpha}(F|_{Y})$ of the maximal norm $(\|H\|_{X} = \alpha |F(1)|)$.

Let $r: \operatorname{Lip}_0[0,1] \to \operatorname{Lip}_0[0,1]$ be the restriction operator

(28)
$$r(F) = F|_{\{0,1\}} \in \operatorname{Lip}_0\{0,1\}, \quad F \in \operatorname{Lip}_0[0,1].$$

Then the operator $Q_{\alpha}: \operatorname{Lip}_{0}[0,1] \to 2^{r^{\perp}}$, defined by

where $I: \operatorname{Lip}_0[0,1] \to \operatorname{Lip}_0[0,1]$ is the identity operator, i.e.

(29)
$$Q_{\alpha}(F) = F - E_{\alpha}(F|_{Y}), \ F \in \text{Lip}_{0}[0,1],$$
 is a multivalued experter for

is a multivalued operator for $\alpha > 1$.

Since the metric projection operator on Y^{\perp} verifies the equality

$$P_{_{\mathcal{X}^{\perp}}}(F) = \{G \in Q_{\mathbf{z}}(F) : \|G - F\|_{\mathcal{X}} = d(F, \ \mathcal{X}^{\perp})\},$$

it follows that $P_{v^{\perp}}(F) \subseteq Q_{\alpha}(F)$, for all $F \in \text{Lip}_{0}[0,1]$.

Let $T_{\alpha}: \operatorname{Lip}_{0}[0,1] \to 2^{r^{\perp}}$ be defined by

 $(30) \quad T_{\alpha}(F) = \{ H \in Q_{\alpha}(F) : \|H - F\|_{\mathcal{X}} = \sup\{ \|U - F\|_{\mathcal{X}} : U \in Q_{\alpha}(F) \} \}.$

The following theorem holds:

Teorem 4. a) The operator $P_{\mathbf{x}^{\perp}}$ is a linear and continuous selection of the operator Q_{α} ;

b) The subspace Y^{\perp} is complemented in $Lip_0[0,1]$ by the subspace

 $W = \{ H \in \text{Lip}_0[0,1] : \ H(x) = ax, \ x \in [0,1], \ a \in R \};$ (31)

c) The operators T_{α} and Q_{α} admit continuous and homogeneous selections.

Proof. a) The operator $P_{_{\mathcal{V}^{\perp}}}$ is single-valued since for every $F\in \operatorname{Lip}_0[0,1]$ there exists a unique element $H\in E_{\mathbf{z}}(F|_{\mathbf{z}})$ such that $\|H\|_{\mathbf{z}}=$ |F(1)| and by Proposition 1. b), it follows that F has a unique nearest

$$P_{\gamma^{\perp}}(\lambda F)(x) = \lambda F(x) - \lambda F(1)x = \lambda P_{\gamma^{\perp}}(F)(x),$$

for $x \in [0,1]$ and $\lambda \in R$.

For F_1 , $F_2 \in \text{Lip}_0[0,1]$ we have

$$P_{Y^{\perp}}(F_1 + F_2)(x) = F_1(x) + F_2(x) - (F_1(1) + F_2(1))x =$$

$$=F_1(x)-F_1(1)x+F_2(x)-F_2(1)x=P_{y^{\perp}}(F_1)(x)+P_{y^{\perp}}(F_2)(x).$$

Therefore $P_{\mathbf{y}^{\perp}}$ is homogeneous and additive.

$$\|P_{_{Y^{\bot}}}\!(F)\,-\,P_{_{Y^{\bot}}}\!(G)\,\|\,\leqslant\,2\|F\,-\,G\,\|_{X}$$

so that $\|P_{\mathbf{v}^{\perp}}(F) - P_{\mathbf{v}^{\perp}}(G)\|_{\mathcal{X}} < 2\,\varepsilon$ for $\|F - G\|_{\mathcal{X}} < \varepsilon$, proving the continuity of the operator P.1.

b) Let $F \in \text{Lip}_0[0,1]$. Then G(x) = F(x) - F(1)x, $x \in [0,1]$ is an element of Y^1 and, since F(1)x is an element of W it follows that F(x) = $= G(x) + F(1)x, x \in [0,1].$

If $F_n \to F$ in $\operatorname{Lip}_0[0,1]$, i.e. $||F_n - F||_X \to 0$, then the inequality $|F_n(1) - F(1)| \leq ||F_n - F||_{\mathbf{Y}}$

implies $|F_n(1)| \to |F(1)|$, showing that the projection operator on W is continuous. Consequently $\operatorname{Lip}_0[0,1] = Y^{\perp} \oplus W$.
c) Consider the selections of the metric projections

$$egin{align} t_{lpha,1}(F) &= F - e_1(F|_Y), & F \in \mathrm{Lip}_0[0,1], \ & t_{lpha,2}(F) &= F - e_2(F_Y|), & F \in \mathrm{Lip}_0[0,1], \ \end{matrix}$$

where e_1 , e_2 are the selections defined by formulae (15) and (16) (with $f=F|_{Y}$). Then the selection

(32)
$$t_{\alpha} = (1/2)(t_{\alpha,1} + t_{\alpha,2})$$

is homogeneous and continuous (according to assertion a of Theorem 3). Since $T_{\alpha}(F) \subseteq Q_{\alpha}(F)$, for all $F \in \text{Lip}_0[0,1]$, it follows that the selec-

tion t_{α} defined by (32) is a selection for Q_{α} , too. Remark 4. For $\alpha = 1$ one obtains $P_{\gamma^{\perp}} = T_1 = Q_1$ implying that T_1 and Q_1 are single valued and therefore are linear and continuous applications from $\operatorname{Lip}_0[0,1]$ to Y^1 .

1. Brown, B. M., Elliot, D. and D. F. Paget, Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous functions, J. Approx. Theory 49 (1987), 196-199.

Cobzas, S. and C. Mustăța, Norm-Preserving Extension of Convex Lipschitz Functions, J. Approx. Theory 34 (1978), 236-244.
 Czipser, J. and L. Géher, Extension of Functions satisfying a Lipschitz Condition, Acta Math.

Acad. Sci. Hungar 6(1955), 213-220.
4. Deutsch, F., Li, W. and S. H. Park, Tielze Extensions and Continuous Selections for Metric

Projections, J. Approx. Theory 63 (1991), 55-88. 5. Mc Shane, E. J., Extension of Range of Functions, Bull. Amer. Math. Soc. 40 (1934),

837-842. 6. Mustăța, C., Norm Preserving Extension of Starshaped Lipschitz Functions, Mathematica

19(42)2 (1977), 183-187. 7. Mustăța, C., Best Approximation and Unique Extension of Lipschitz Functions, J. Approx.

Theory 19(1977), 222-230. Mustăța, C., M-ideals in Metric Spaces, "Baheș-Bolyai" University, Fac. of Math. and Physics, Research Seminars, Seminar on Math. Analysis, Preprint N° 7 (1988), 65-74.

9. Mustăța, C., Selections Associated to Mc Shane's Extension Theorem for Lipschitz Functions, Revue d'Analyse Numérique et de Théorie de l'Approx. 21, 2 (1992), 135-145.

Received 2.IV,1993

Institutul de Calcul Str. Republicii Nr. 37 Oficiul Poștal 1 3400 Cluj-Napoca România