ON THE SOLUTION OF NONLINEAR EQUATIONS WITH A NONDIFFERENTIABLE TERM

IOANNIS K. ARGYROS (Lawton)

1. Introduction which was seen to thought as a unit was a live of the seen of

We consider the generalized Newton-like method

$$z_{n+1} = z_n - A(z_n)^{-1} (F(z_n) + G(z_n)), \ n = 0, 1, 2, \dots$$
 (1)

for some $z_0 \in U(z^0, R)$, to approximate a solution x^* of the equation

$$F(x) + G(x) = 0$$
, in $\overline{U}(z^0, R)$. (2)

Here A(x), F, G denote operators defined in the closed ball $\overline{U}(z^0, R)$ of center z^0 and radius R, of a Banach space X with values in a Banach space Y. The operator A(x) is linear and approximates the Fréchet derivative F'(x) of F at $x \in U(z^0, R)$. We will assume that $A(z^0)^{-1}$ exists and any $x, y \in \overline{U}(z^0, r) \subseteq \overline{U}(z^0, R)$ with $0 \leq ||x - y|| \leq R - r$,

$$||A(z^0)^{-1}(A(x) - A(z^0))|| \le B_1(||x - x^0||),$$
 (3)

$$||A(z^0)^{-1}(F'(x+t(y-x))-A(x))|| \le 1$$

$$B_2(r, \|x-z^0\|+t\|y-x\|)-B_1(\|x-z^0\|), \ t\in [0, 1]$$

and

$$||A(z^0)^{-1}(G(x) - G(y))|| \le B_3(r, ||x - y||).$$
 (5)

Here,

(a) the function $B_1(r)$ is nonnegative and differentiable with $B_1'(r)>0$

for all $r \in [0, R]$ and $B_1(0) = \tilde{0}$;

(b) the $B_2(r, r')$ and $B_3(r, r')$ defined on $[0, R] \times [0, R]$ and $[0, R] \times [0, R-r]$ are respectively nonnegative, continuous and non-decreasing functions of two variables and B_3 is linear in the second variable with $B_2(0, 0) = B_3(0, 0) = 0;$

(c) the function $B_2(r+r', r) - B_1(r), r' \geqslant 0$ is non-decreasing and nonne-

If we take

$$w_0(r) + b, (6)$$

$$w(r') + c \tag{7}$$

and

$$e(r')$$
 (8)

to be the right hand sides of (3)-(5) respectively for all $r \in [0, R]$ and $r' \in [0, R-r]$, then we obtain the Zabrejko-Nguen conditions considered by Chen and Yamamoto in [3].

Many authors have obtained sufficient conditions for the convergence of iteration (1) to a locally unique solution x^* of equation (2) [1]-[13].

Among those, Zincenko [13] proved convergence under Kantorovich type assumptions, whereas Rheinboldt used the majorant principle [7]. Then, Zabrejko and Nguen proved convergence using the hypotheses named after them [12]. Chen and Yamamoto followed recently by generalizing the Zabrejko and Nguen hypotheses [3].

It can be seen using (6)—(8) that our conditions generalize the ones considered by Chen and Yamamoto. We believe that conditions of the form (3)-(5) are useful not only because we can treat a wider range of problems than before, but it turns out that under natural assumptions we can find better error bounds on the distances $||z_{n+1} - z_n||$ and $||z_n - x^*||$, $n=0,\,1,\,2,\ldots$ Further, we specify a convergence domain D such that starting from any point of D iteration (1) converges to a unique solution x^* of equation (2).

For the case of Newton's method Rall in [6] and Rheinboldt in [8] provided a convergence domain under the assumption that $F'(x^*)^{-1}$

exists.

Finally, we provide a simple example where our results apply whereas the corresponding ones given by Chen and Yamamoto in [3] do not.

2. Convergence Results

We will need to define the constant

$$a = ||A(z^0)^{-1}(F(z) + G(z))|| > 0,$$

and the functions

$$\phi(r)=a-r+\int\limits_0^rB_2(R,\ t)\ \mathrm{d}t,$$
 $\psi(r)=B_3(R,\ r).$ $lpha(r)=\phi(r)+\psi(r),$ $v(r)=lpha(r)-lpha^*,$ $v(r)=1-B_1(r),$

where α^* is the minimal value of $\alpha(r)$ in [0, R] and r^* is the minimal point. If $\alpha(r) \leq 0$, then $\alpha(r)$ has a unique zero t^* in $(0, r^*]$, since $\alpha(r)$ is strictly convex.

Moreover, we define the scalar iterations

$$r_{n+1} = r_n + u(r_n), \ r_0 \in [0, \ r^*], \ n = 0, 1, 2, \dots$$
 (9)

and

$$s_{n+1} = s_n + u(s_n), \ s_0 = 0, \ n = 0, 1, 2, \dots,$$
 (10)

where

$$u(r) = \frac{v(r)}{w(r)}.$$

Finally, we define the Zincenko iteration

$$\bar{x}_{n+1} = x_n - A(x_n)^{-1} (F(x_n) + G(x_n)),$$

$$x_0 = z^0, \ n = 0, 1, 2, \dots$$
(11)

As in [3], we now show a result concerning the convergence of the sequence $\{r_n\}$ to r^* .

Proposition. Suppose that $\alpha(R) \leq 0$. Then r^* is the unique zero of v(r) in $[0, r^*]$ and the sequence $\{r_n\}$, $n = 0, 1, 2, \ldots$ given $b\bar{y}$ (9) is monotonically increasing and converges to r*.

Proof. By definition, $v(r^*) = \alpha(r^*) - \alpha^* = 0$ and v(r) is strictly convex. Hence r^* is a unique zero of v(r) in $[0, r^*]$. The function v(r)is positive on $[0, r^*)$, since from $\alpha^* = \alpha(r^*) \leqslant \alpha(R) \leqslant 0$ we get v(0) = $= \alpha(0) - \alpha^* \geqslant \alpha > 0$ and r^* is a unique zero of v(r) in $[0, r^*]$. We will show that the function w(r) is positive on $[0, r^*]$. By the conditions (b) and (c)

$$-w(r) = B_1(r) - 1 \le -1 + B_2(R, r) + \frac{\partial B_3(R, r)}{\partial r} =$$

$$= v'(r) < v'(r^*) = \alpha'(r^*) = 0. \tag{12}$$

Hence, w(r) is positive on $[0, r^*)$ and by L'Hospital's Theorem u(r) admits a continuous extension on $[0, r^*]$.

We will now show that the function r + u(r) is nondecreasing on

$$(r+u(r))'=1+u'(r)=\frac{w(r)[w(r)+v'(r)]-v(r)w'(r)}{(w(r))^2}.$$

But,

$$w(r)[w(r) + v'(r)] = w(r) \left[B_2(R, r) - B_1(r) + \frac{\partial B_3(R, r)}{\partial r} \right] \geqslant 0$$

$$-v(r)w'(r) = -v(r)[-B'_1(r)] = v(r) B'_1(r) \ge 0.$$

Hence, the function r + u(r) is nondecreasing on $[0, r^*]$. The sequence $\{r_n\}$ is monotonically increasing, since the function u(r) is nonnegative. Let us assume that $r_n \leq r^*$, then $r_{n+1} = r_n + u(r_n) \leq r^* + v(r^*) = r^*$. That is the sequence $\{r_n\}$ is monotonically increasing and bounded above by r^* and as such it converges to some $r_*^* \in [0, r^*]$. Moreover $r_*^* = r_*^* +$ $+ u(r_1^*)$. Hence $r_1^* = r^*$.

That completes the proof of the proposition.

age of the color of the first of the carbon and the carbon

As in [3], let us define the sets

$$\widetilde{U} = \begin{cases} \overline{U}(z^0, R), & \text{if } \alpha(R) < 0 \text{ or } \alpha(R) = 0 \text{ and } t^* = R \\ U(z^0, R), & \text{if } \alpha(R) = 0 \text{ and } t^* < R \end{cases}, \tag{13}$$

$$D = \bigcup_{r \in [0, r^*]} \{ z \in \overline{U}(z^0, r) \mid ||A(z)^{-1} (F(z) + G(z))|| \le u(r) \}, \tag{14}$$

 $R_z = \{ r \in [0, \ r^*] \mid ||A(z)^{-1} (F(z) + G(z))|| \le u(r), \ ||z - z^0|| \le r \}, \quad (15)$ provided that $\alpha(R) \le 0$.

We can now prove the main theorem.

Theorem 1. Suppose that $\alpha(R) \leq 0$. Then

(i) the equation (2) has a solution x^* in $\overline{U}(z^0, t^*)$, which is unique in \widetilde{U} ; (ii) for any $z_0 \in D$, the iteration (1) is well defined for all $n \geq 0$, remains in $U(z^0, r^*)$ and satisfies the estimates

$$||z_{n+1} - z_n|| \leqslant r_{n+1} - r_n \tag{16}$$

and

$$||x^* - z_n|| \leqslant r^* - r_n \tag{17}$$

provided that $r_0 \in R_{z_0}$. Moreover, the sequence given by (11) converges to x^* and

$$||x_{n+1} - x_n|| \leqslant s_{n+1} - s_n$$

and

$$||x^* - x_n|| \leqslant r^* - s_n$$

for all n = 0, 1, 2, ...

Proof. We will first show that the sequence $\{r_n\}$ majorizes the sequence $\{z_n\}$, $n \ge 0$. The estimate (17) will then follows from (16).

Let us choose $z_0 \in D$. Then there exists a $r_0 \in R_{z_0}$ such that

$$||z_0 - z^0|| \leqslant r_0 < r^* \tag{18}$$

and

$$||z_1 - z_0|| = ||A(z_0)^{-1} (F(z_0) + G(z_0))|| \le u(r_0) = r_1 - r_0.$$
 (19)

By (18) and (19) we get

$$||z_1 - z^0|| \le r_1. \tag{20}$$

We will show (16) $||z_n - z^0|| \le r_n$ by induction on n. For n = 0, (16) is (20) and $||z_0 - z^0|| \le r_0$ is (18).

Let us assume that

$$||z_n - z_{n-1}|| \le r_n - r_{n-1} \text{ and } ||z_n - z^0|| \le r_n,$$

are true for $n \leq k$.

Then, from (3)-(6) and (12), we have that $A(z_k)^{-1}$ exists,

$$||A(z_k)^{-1}|A(z^0)|| \le w(r_k)^{-1}$$

and

$$||z_{k+1} - z_k|| = ||A(z_k)^{-1} (F(z_k) + G(z_k))||$$

$$\leq ||A(z_k)^{-1} A(z^0)|| \cdot ||A(z^0)^{-1} \{F(z_k) + G(z_k) - A(z_{k-1}) \cdot (z_k - z_{k-1}) - F(z_{k-1}) - G(z_{k-1})\}||$$

 $\leq w(r_{k})^{-1} \left\{ \int_{0}^{1} \|A(z^{0})^{-1} \left(F'(z_{k-1} + t(z_{k} - z_{k-1})) - A(z_{k-1})\right) \|. \right.$ $\left\| z_{k} - z_{k-1} \| dt + \|A(z^{0})^{-1} \left(G(z_{k}) - G(z_{k-1})\right) \| \right\}$ $\leq w(r_{k})^{-1} \left[\int_{0}^{1} \left(B_{2}(r_{k}, r_{k-1} + t(r_{k} - r_{k-1})) - B_{1}(r_{k-1})\right)(r_{k} - r_{k-1}) dt + \right.$ $\left. + B_{3}(r_{k}, r_{k} - r_{k-1}) \right]$ $\leq w(r_{k})^{-1} \left[\int_{r_{k-1}}^{r_{k}} B_{2}(r_{k}, t) dt - B_{1}(r_{k-1})(r_{k} - r_{k-1}) + B_{3}(r_{k}, r_{k} - r_{k-1}) \right]$ $\leq w(r_{k})^{-1} \left[\int_{r_{k-1}}^{r_{k}} B_{2}(R, t) dt - B_{1}(r_{k-1})(r_{k} - r_{k-1}) + B_{3}(R, r_{k} - r_{k-1}) \right]$ $= w(r_{k})^{-1} \left(v(r_{k}) - v(r_{k-1}) + w(r_{k-1})(r_{k} - r_{k-1}) \right)$ $= w(r_{k})^{-1} v(r_{k})$ $= r_{k+1} - r_{k}.$

This shows (16) for all $n \ge 0$. Moreover

$$||z_{k+1} - z^0|| \le ||z_{k+1} - z_k|| + ||z_k - z^0|| \le r_{k+1}.$$

That is, $z_n \in U(z^0, r^*)$.

Hence, $\{z_n\}$ is a Cauchy sequence in a Banach space and as such it converges to a solution $x^* \in U(z^0, r^*)$ of equation (2). In particular, $z^0 \in D$ and the iteration $\{x_n\}$ given by (11) is majorized by the iteration $\{s_n\}$ given by (10) and converges to x^* .

We must show that the solution x^* is unique in D. Let z^* be any solution in D. Using (11) and the identity

$$z^* - x_1 = z^* - (x_0 - A(x_0)^{-1} (F(x_0) + G(x_0)))$$

$$= -A(x_0)^{-1} [F(z^*) - F(x_0) - A(x_0)(z^* - x_0)] -$$

$$-A(x_0)^{-1} (G(z^*) - G(x_0))$$

(4) and (5) we obtain

$$||A(x_0)^{-1}(F(z^*) - F(x_0) - A(x_0)(z^* - x_0))|| =$$

$$= \left\| \int_0^1 A(x_0)^{-1} (F'(x_0 + t(z^* - x_0)) - A(x_0)(z^* - x_0)) dt \right\|$$

$$\leq \int_{0}^{1} B_{2}(\|z^{*} - x_{0}\|, t \|z^{*} - x_{0}\|) \|z^{*} - x_{0}\| dt$$

$$\leq \int_{0}^{\|z^{*} - x_{0}\|} B_{2}(\|z^{*} - x_{0}\|, t) dt$$

$$\leq \int_{0}^{\|z^{*} - x_{0}\|} B_{2}(R, t) dt,$$

and

$$||A(x_0)^{-1} (G(z^*) - G(x_0))|| \le B_3(||z^* - x_0||, ||z^* - x_0||) \le S_3(R, ||z^* - x_0||).$$

With this majorization we have

$$||z^* - x_0|| - a \le ||z^* - x_1|| \le \int_0^{||z^* - x_0||} B_2(R, t) dt + B_3(R, ||z^* - x_0||),$$

from which we obtain $\sigma(\|z^* - x_0\|) \ge 0$. That is

$$||z^* - x_0|| \le t^* \le r^* - s_0.$$

We will now show that

$$||z^* - x_n|| \le r^* - s_n, \ n = 0, 1, 2, \dots$$
 (21)

We have proved that (21) is true for n=0. Suppose that (21) is true for all $n \leq k$. We obtain.

$$\|z^* - x_{k+1}\| = \|z^* - x_k + A(x_k)^{-1} (F(x_k) + G(x_k)) - A(x_k)^{-1} (F(z^*) + G(z^*))\|$$

$$\leq w(s_k)^{-1} \left\{ \int_0^1 \|A(x_0)^{-1} (F'(x_k + t(z^* - x_k)) - A(x_k)) \cdot \|z^* - x_k\| \, \mathrm{d}t \right.$$

$$+ \|A(x_0)^{-1} (G(z^*) - G(x_k))\| \right\}$$

$$\leq w(s_k)^{-1} \left[\int_0^1 B_2(\|x_k - x_0\|, \|x_k - x_0\| + t\|z^* - x_k\|) \|z^* - x_k\| \, \mathrm{d}t \right.$$

$$+ B_3(\|z^* - x_k\|, \|z^* - z_k\|) \right]$$

$$\leq w(s_k)^{-1} \left[\int_0^1 B_2(R, s_k + t(r^* - s_k))(r^* - s_k) \, \mathrm{d}t + B_3(R, r^* - s_k) \right]$$

$$\leq w(s_k)^{-1} \left[\int_{s_k}^{r^*} B_2(R, t) dt + B_3(R, r^* - s_k) \right]$$

$$= w(s_k)^{-1} (\alpha(r^*) - \alpha(s_k)) + r^* - s_k$$

$$= r^* - s_{k+1} \to 0 \text{ as } k \to \infty.$$

Hence $z^* = x^* \in \bar{U}(x_0, t^*)$.

That completes the proof of the theorem.

Note that condition (4) implies that $A(x_0) = F'(x_0)$. To cover the case $A(x_0) \neq F'(x_0)$, let us assume

$$\begin{split} \|A(z^0)^{-1} \left(A(x) - A(z^0)\right)\| \leqslant \bar{B}_1(\|x - z^0\|) + b, \\ \|A(z^0)^{-1} \left(F'(x + t(y - x)) - A(x)\right)\| \leqslant \\ \bar{B}_2(r, \|x - z^0\| + t\|y - x\|) - \bar{B}_1(\|x - z^0\|) + c, \ t \in [0, 1] \end{split}$$

and

$$||A(z^0)^{-1}(G(x) - G(y))|| \leq \bar{B}_3(r, ||x - y||)$$

for all $x, y \in \overline{U}(z^0, r) \subset \overline{U}(z^0, R)$ with $0 \le ||x - y|| \le R - r$, and b + c < 1. Let us define the functions

$$\overline{arphi}(r) = a - r + \int\limits_0^r ar{B}_2(R,\ t)\ \mathrm{d}t$$
 $\overline{\psi}(r) = ar{B}_3(R,\ r)$
 $\overline{lpha}(r) = \overline{arphi}(r) + \overline{\psi}(r) + (b+c)r,$
 $\overline{v}(r) = \overline{lpha}(r) - \overline{lpha}^*,$
 $\overline{v}(r) = 1 - b - ar{B}_1(r),$
 $\overline{u}(r) = \frac{\overline{v}(r)}{\overline{lpha}(r)},$

and the sequences

$$ar{r}_{n+1} = ar{r}_n + ar{u}(ar{r}_n), \ ar{r}_0 \in [0, R], \ n = 0, 1, 2, \dots$$
 $ar{s}_{n+1} = ar{s}_n + ar{u}(ar{s}_n), \ s_0 = 0, \ n = 0, 1, 2, \dots$

Then following the proof of the Proposition and Theorem 1 we can develop identical results if \bar{B}_1 , \bar{B}_2 , \bar{B}_3 satisfy the (a), (b), (c) of the introduction and $\bar{\alpha}(R) \leq 0$.

Note that in this case by setting $\bar{B}_1 = w_0$, $\bar{B}_2(r, t) = w(t)$ and $\bar{B}_3(r, t) = e(t)$, our conditions reduce to the Chen-Yamamoto conditions given in [3, p. 39].

Proposition 2. Suppose that the hypotheses of Theorem 1 are true, then

$$\overline{U}\left(z^0, \frac{|lpha^*|}{2}
ight) \subset D.$$

Proof. We have

$$|\alpha^*| = |\alpha(r^*) - \alpha(t^*)| \le |r^* - t^*| = r^* - t^* < r^*,$$

since

$$-1 \leqslant \alpha'(r) \leqslant 0$$
 for $r \in [0, r^*]$.

That is, $||z_0 - z^0|| \le \frac{|\alpha^*|}{2} < r^*$ for any $z_0 \in \overline{U}(z^0, \frac{|\alpha^*|}{2})$. Set $||z_0 - z^0|| = r_0$. The linear operator $A(z_0)^{-1}$ exists now by (3), (12), and

$$||A(z_0)^{-1} A(z^0)|| \leq w(r_0)^{-1}.$$

We now obtain

$$||A(z_0)^{-1} (F(z_0) + G(z_0))||$$

$$\leqslant w \ (r_0)^{-1} \left\{ \int\limits_0^1 \|A(z^0)^{-1} (F'(z^0 \ + \ t(z_0 \ - \ z^0)) \ - \ A(z^0)) \, \| \cdot \ \| z_0 \ - \ z^0 \, \| \ \mathrm{d}t \right\}$$

$$+ \|A(z^0)^{-1} (G(z_0) - G(z^0)) + \|z_0 - z^0\| + a]$$

$$\leqslant w(r_0)^{-1} \left\{ \int\limits_0^{r_0} B_2(R, t) \, \mathrm{d}t + B_3(R, r_0) + r_0 + \alpha + |\alpha^*| - 2r_0 \right\}$$

$$= w(r_0)^{-1} (\alpha(r_0) - \alpha^*),$$
 which implies that $z_0 \in D$.

That completes the proof of the proposition.

To obtain further bounds on the distances $||y_{n+1} - y_n||$ and $||x^* - y_n||$ as in [3, p. 44] we generalize the function $\alpha(r)$ as follows:

For any $z \in D$, we choose a number $r_z \in R_z$, which we fix and we define

$$a_z = \|A(z)^{-1} (F(z) + G(z))\|,$$
 $d_z = \begin{cases} 1, & \text{if } z = z^0 \text{ and } r_z = 0 \\ w(r_z)^{-1}, & \text{otherwise} \end{cases}$

and

$$\alpha_z(r) = a_z + d_z \Big(\int_0^r B(R, r_z + t) + B(R, r_z + t) - r \Big).$$

Moreover, let us define the sequence

$$v_{n+1} = v_n + \frac{\alpha_z(v_n)}{d_z w(r_z + v_n)}, \ v_0 = 0, \ n = 0, 1, 2, \ldots$$

Then under the hypotheses of Theorem 1 and identically with the proof of Theorem 2 in [3, p. 45] we can show

Theorem 2. Suppose that the hypotheses of Theorem 1 are true.

Then

- (i) $\alpha_z(r^*-r_z) \leq 0$ and the function $\alpha_z(r)$ has a unique zero $v^* \in [0, r^*-r_z]$;
- (ii) the iteration (1) satisfies

$$||z_{n+1}-z_n|| \leqslant v_{n+1}-v_n$$

and

$$||x^* - z_n|| \le v^* - v_n \le r^* - r_n, \quad n \ge 0$$

for $z_0 = z$.

To compare our results with the ones obtained by Chen and Yamamoto in [3] we refer the reader to the introduction and define the functions

$$\phi_1(r) = a - r + \int\limits_0^1 w(t) dt$$
 $\psi_1(r) = \int\limits_0^r e(t) dt,$

$$egin{align} arphi_1(r) &= arphi_1(r) + \psi_1(r) + (b + c) \, r, \ v_1(r) &= lpha_1(r) - lpha_1^*, \ w_1(r) &= 1 - w_0(r) - b, \ u_1(r) &= rac{v_1(r)}{v_1(r)}, \end{aligned}$$

and the iterations

$$r'_{n+1} = r'_n + u_1(r'_n), \ r'_0 \in [0, R]$$

and

$$s'_{n+1} = s'_n + u_1(s'_n), \ s'_0 = 0, \ n \ge 0.$$

If $\alpha_1(R) \leq 0$, Chen and Yamamoto showed [3, Th. 1] similar results and in particular

$$||z_{n+1} - z_n|| \leq r'_{n+1} - r'_n,$$

$$||z_n - x^*|| \leq r_1^* - r'_n,$$

$$||x_{n+1} - x_n|| \leq s'_{n+1} - s'_n,$$

and

$$||x_n - x^*|| \leqslant r_1^* - s_n'.$$

We can now justify the claim made at the introduction.

Proposition 3. Suppose that

(i) $\alpha(R) \leq 0$ and $\alpha_1(R) \leq 0$;

(ii)
$$\int_{0}^{r} B_{2}(R, t) dt + B_{3}(R, r) \leq \int_{0}^{r} w(t) dt + \int_{0}^{r} e(t) dt + (b + c) r$$

and

(iii)
$$B_3(R, r) \leq w_0(r) + b$$
.

Then

$$lpha(r) \leqslant lpha_1(r),$$
 which is the set $t^* \leqslant t_1,$ in solution of the set $t^* \leqslant t_2$ and the set $t^* \leqslant t_3$ and $t^* \leqslant t_4$

$$||z_{n+1} - z_n|| \le r_{n+1} - r_n \le r'_{n+1} - r'_n,$$

$$||z_n - x^*|| \le r^* - r_n \le r_1^* - r'_n,$$

$$||x_{n+1} - x_n|| \le s_{n+1} - s_n \le s'_{n+1} - s'_n,$$

and

$$||x_n - x^*|| \le r^* - s_n \le r_1^* - s_n',$$

provided that $r_0 = r'_0$.

Proof. The proof follows immediately using (i), (ii), (iii) and the definition of $\alpha(r)$, $\alpha_1(r)$, $\{r_n\}$, $\{r'_n\}$, $\{s_n\}$, $\{s'_n\}$, $\{s_n\}$ and $\{x_n\}$, $n \ge 0$.

3. Aplications

Let us consider the scalar equation

$$F(x) + G(x) = 0, (22)$$

where $F(x) = e^x - 1$, G(x) = -|x| and let $x_0 = .1$ and R = .5. We define the functions

$$w_0(r)=e^r r=w(r),$$
 $\mathrm{e}(r)=\|F'(x_0)^{-1}\|=.904837418=q$ $B_1(r)=e^r r,$ $B_2(r,\ t)=\mathrm{e}^r t,$

and

$$B_3(r, t) = q(r - t), \ 0 \leqslant t \leqslant r \ \text{ and } \ 0 \leqslant r \leqslant R.$$

Then

$$\alpha(r) = a - r + e^{R} \frac{r^{2}}{2} + q(R - r)$$

and

$$\alpha_1(r) = (e^r - 1)(r - 1) + a + q^r$$

with

$$a = 4.678840092 \cdot 10^{-3}$$
 and $b = c = 0$.

It is simple calculus to check that all the conditions of Theorem ${\bf 1}$ are satisfied.

In particular, $\alpha(R) = -.289231 < 0$ and $\alpha_1(R) = .362443729 > 0$. That is the Chen-Yamamoto hypotheses given by Theorem 1 in [3] are not satisfied.

Theorem 1 can now be used to obtain the unique solution $x^* = 0$ of equation (22) in $\overline{U}(x_0, R)$.

REFERENCES

 I. K. Argyros, On Newton's method and nondiscrete mathematical induction. Bull. Austral. Math. Soc. Vol. 38, (1988), 131-140.

 M. Balazs and G. Goldner, On the method of the cord and on a modification of it for the solution of nonlinear operator equations. Stud. Gerc. Mat. 20, (1968), 981-990.

3. X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. and Optimiz., 10 (1 and 2), (1989), 37-48.

4. W. B. Gragg and R. A. Tapia, Optimal error bounds for the Newton-Kantorovich Theorem. S.I.A.M. J. Numer. Anal. 11 (1974), 10-13.

5. F. A. Potra and V. Ptak, Sharp error bounds for Newton's process. Numer. Math. 34, (1980), 63-72.

6. L. Rall A note on the convergence of Newton's method, S.I.A.M. J. Number. Anal. 1 (1974), 34-36.

 W. C. Rheinboldt, A unified convergence theory for a class of iterative processes. S.I.A.M. J. Numer. Anal. 5 (1968), 42-63.

8. W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in: Mathematical models and numerical methods. Banach Center Publ. 3, (1978), 129—142, Warszawa: Pwn-Polish Scientific Publishers.

9. J. W. Schmidt, Under Fehrerschranker für regular-falsi-verfahren. Period. Math. Hung. 9, (1978), 241-247.

 T. Yamamoto, A method for finding sharp error bounds for Newton's method under the Kantorovich assumptions. Numer. math. 44, (1986), 203-220.

11. T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nguen for Zincenko's iteration. Numer. Funct. Anal. and Optimiz., 9, (9 and 10), (1987), 987-994.

12. P. P. Zabrejko and D. F. Nguen, The majorant method in the theory of Newton-Kantorovich approximations and the Ptâk error estimates. Numer. Funct. Anal. Optimiz. 9, (1987), 671 – 684.

13. A. I. Zincenko, Some approximate methods of solving equations with non-differentiable operators. (Ukrainian). Dopovidi Akad. Navk. Ukrain. RSR (1963), 156-161.

Received 1.VII.1992

Department of Mathematics Cameron University Lawton, OK. 73505