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1. Iniroduetion
We consider the generalized Newton-like method
Ty = 2 — A(e)T (F(22) + (), n = 0,1, 2,... (1)
for some 2z, € U(2°, R), to approximate a solution x* of the equation
H(x) + G(z) =0, in U(z°, R). (2)

Here A(z), ', G denote operators defined in the closed ball U(20, R) of
center 2° and radius R, of a Banach space U with values in a Banach
space Y. The operator A(x) is linear and approximates the Fréchet
derivative F'(x) of I' at o & U(2" R). We will assume that A(2%-1 exists
and any @, y € U(<% ») < U2, ) with 0 < |lw — y | € R - o,

14207 (A(@) — A < By(fle — ao)), (3)
A (2 + ty — ) — A(a)] <
Bory o — 20+ thy — @l) — By(flo — 200), te [0, 1] (4)
and
1) (G (@) — Gy | < Byr, o — y]). (5)
Here,

(a) the function B,(r) is nonnegative and differentiable with Bir) >0
for all e [0, R)] and Bi(0) =0;

(b) the By(r, »") and By(r, ") defined on [0, B] X [0, R] and [0, R] x
X [€, B — r] are respectively nonnegative, continuous and non-decreasing
funetions of two variables and B is linear in the second variable with
Bz((}, 0) = -BS{U: 0) = 0;

and
(c) the function B,(r + 'y 1) — Bir), v’ > Cis non-decreasing and nonne-
gative,
If we take
wo(r) + b, (6)
w(r’) + ¢ (")
and

e(r’) (8)
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to he the right hand sides of (3)—(5) respectively for all r e [0, 2] and
r e [0, B — ], then we obtain the Zabrejko-Nguen conditions con-
gidered by Chen and Yamamoto in [3].

Many authors have obtained sufficient conditions for the convergence
of iteration (1) to a locally unique solution @* of equation (2) [1]—[13].

Among those, Zincenko [13 ] proved convergence under Kantorovich
type assumptions, whereas Rheinboldt used the majorant principle [7].
Then, Zabrejko and Nguen proved convergence using the hypotheses
named after them [12]. Chen and Yamamoto followed recently by gene-
ralizing the Zabrejko and Nguen hypotheses [3].

1t can be seen using (6) —(8) that our conditions generalize the ones
considered hy Chen and Yamamoto. We believe that conditions of the
form (3) —(5) are useful not only because we can treat a wider range of
problems than before, but it turns out that under natural assumptions
we can find better error bounds on the distances lz,,, — @/l and |lza — 2™ |,
n =0, 1, 2,.... Further, we specify a convergence domain D -such that
starting from any point of D iteration (1) converges to a unique solution
a* of equation (2).

Tor the case of Newton’s method Rall in [6] and Rheinboldt in
[8] provided a convergence domain under the assumption that F'(a*)~*
exists.
Tinally, we provide a simple example where our results apply whe-
reas the corresponding ones given by Chen and Yamamoto in {3] do not.

2. Convergenee itesulls

We will need to define the constant

w = AR (=) + G(=))| > 0,
and the functions

w(r) =1 — By(r),
where o* is the minimal value of «(r) in [0, R] and #* i3 'the. minimal
point. If «(r) < 0, then «(r) has a unique zero t* in (0, 7*], since a(r)

is strictly convex.
Moreover, we define the scalar iterations

Puyr = Tn + u(ra), 7o € [0, r*], n =0, 1, 2y (9)
and
Sney = Su + u(80), S =0, n =0, 1, 2,..., (10)
where
ulr) = 27

w(7r) '
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Finally, we define the Zincenko iteration
Tneg = T — Alw,)™H (Fa,) + G(w)),
g =2% n=0,1,2 ... T (11)

Ag in [3], we now show a result concerning the convergence of the se-
quence {r,} to r*. '

Pr.opositimll. Suppose that (k) < 0. Then »* s the unique zero
of w(r) in [0, r*] and the sequence {r,}, n =0, 1, 2,... given by (9) is
monotonically increasing and converges to r*, ‘

Proof. By definition, v(r*) = a(r*) — o* =0 and o(r) i3 strictly
conyex. Hence 7* is a unique zero of »(r) in [0, »*]. The function o(r)
Is positive on [0, 7%), since from ¥ = o(1*) < «(R) < 0 we get v(0) =
= o(0) — o«* = a > 0 and r* is a unique zero of v(r) in [0, »*]. We will
show that the function w(r) is positive on [0, »*]. By the conditions
(b) and (¢) ' "

Cw() = Byr) — 1 < —1 + ByR, 1) + 2BalE )
or

= '(r) < 0'(*) = o'(#*¥) = 0. (1é)

Hence, w(r) is positive on [0, 7%) and by I."Hospital’s Theorem wu(r) admits
a continuous extension on [0, 7%]. L

We will now show that the function r 4+ () is nondecreasing |
[0, ¥*]. We have + ul(n) asing on

w(M [w(r) + 2" (7)] — o(r) w(r)

(r+u@®@)) =1-+u(r) = .
(w(7))*
But,
w(r) [w(r) + v'(r)] = w(r)[ ByR, v) — By(r) + M] >0
and ] N
— v(rw'(r) = — o(r)[— Bi(r)] = o(r) Bi(r) > 0.

Hence, the function 7 +4- w(r) is nondecreasing on [0, 7*]. The sequénce
{r»} 18 monotonically increasing, since the function w(r) is nonnegative.
I‘A_et us assume that 7, < r¥*, then r,,, =7, + u(r,) < r¥ L o(¥) = ¥,
lhat‘hls the sequence {r,} is monotonically increasing and bounded above
by 7* and as such it converges to some ¥ € [0, 7*]. Moreover r¥ = ¢¥ 4
-+ w(r¥). Hence 7¥ —= y*,

That completes the proof of the proposition.

As in [3], let us define the sets

7 {U(ZO, R), if «(R) <0 or o(R) =0 and {* = R
U(z0, R), it a(R) =0 and t* < R

D= U {2l r)||A()" (F(z) + G(2)) ||§ u(r)}, (14)

refo, rk)

; (13)
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and

B, = {re [0, r*]]]A(:) (F(z) + G@) || < w(r), |z — 22| <7}, (13)
provided that «(R) < 0.

We can now prove the main theorem.

Theorem 1. Suppose that «(R) < 0. Then _
(1) the equation (2) has a solution z* in T(29, t*), which is unique in U ;

(1) for any 2z D, the iteration (1) is well defined for all n > 0, remains
n U2 r*) and satisfies the estimates

||2"+1 — %n ” < 7'"+1 — 7y (16}
and
lo* —zul < r* — (17)
provided that rye R, . Moreover, the sequence given by (11) converges to
r* and
H‘T’n+1 — ¥ ” < Sy Sa
and

le* — x. )| < 7% — 8,
Jor all n =0,1, 2,....

Proof. We will first show that the sequence {r»} majorizes the
sequence {z,}, » > 0. The estimate (17) will then follows from (16).
Let us choose z,€ D. Then there exists a r,e R, such that

lzg — 2%l < 7y < 1% (18)
and '
ler — 2ol = [l A(z0)™" (F(20) + G(zo)) || < ulrg) =1, — 7. (19)
By (18) and (19) we get
lley — 20 < 7y (20)

We will show (16) |z, —2°| < #, by induction on n. For n =0, (16)
is (20) and |, — 2°| < 7, i3 (18).
Let us assume that

2 — 2u-y | < 1 — Ppg and iz, — 20 < 1y,

are true for # < k.
Then, from (3)—(6) and (12), we have that A(z,)! exists,

[A(2) A(L) | < w(r)?
and

leesy — 26l = A (2)7" (F2e) + G(a)) ||
< 1A AR |- AR {F(2) + @) — Alzry)

(E — 2e) — Flzen) — G-}l
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7 "

<mm4{&mwwww@ﬂ+u%—%ﬂ»~A@4w.

W%—whwm+WMWfWﬂ%%~ﬂ%JW}
| |

< w(r)! [ S (By(14, Ppoq + Wy, — Pray)) — By(re_))(r, — Ppey) AF -

0

+ Ba(frl‘; ry — 7‘k—1)]

e

< w(r)? [SBZU«M Hdt — Bi(re_ ), — Teoy) + By(ry, 7 — 7-k_1)}

k—1

7

Swmp[&”&”m‘ﬂmdm—na+Bﬂan—mmJ

=

= w7 (e) — e(riey) + W), — 7))
= (7)™t o(ry)

= Py — P
This shows (16) for all » > q. Moreover

l2ra — 2% < 2 — 21 + lze —20) <
That is, z,€ U(20, %)

Hence, {z,} is a Cauchy sequence in a Banach space and as such it
ct?nvel‘ges to a solu‘tlon z* e U(2°% %) of equation (2). In particular,
2"e D and the iteration {w,} given by (11) is majorized by the iteration
{%:} given by (10) and converges to g*.

We must show that the solution z* is unique in D. Let z* be an
solution in D). Using (11) and the identity d

Thyr1e

= (@ — A(20) (Bay) + G(ay))
= = Al B — Pay) — Alm)e* — z)] —

— A(20}" (G(z%) — G(x,))
(4} and (5) we obtain

A (o)™ (B(2*) — Fmy) — Awe)(2* — 2))|| =

::MAWJ”FWV*W*~%D—AWMﬁ—w0m”
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1

<\ Buller — w0l tle® — mall I — o at
o
0

[e*—xoli
<\ Ble* - w0 @i
0
l#* =gl
< S By( R, t) di,
0

and » . | .
[ A(wo)™ (G(2*) — G(@e) | < By(lle* — aol, ¥ — 2l) <

< By(R, 2% — 2o ).

With this majorization we have

L=l

[ — @l — 6 < || — | < By R, 1)ydl 4- By(R, ||z* — @),
0
from which we obtain o([z* — o) = 0. That is
fle* — @l < 1% < 9% — s,
We will now show that
[ — @, || <% — 8, n=0,1, 2,.... (21)

We have proved that (21) is true for » = 0. Suppose that {21) is
true for all » < k. We obtain,

[ = B | = 2% — @ + Alm)™ (Fa) 4 Gw,)) —
— A(m)™t (F(%) 4 G(2¥)) ||

<w(sp)™ {S |4 (o)™ (B (2, + #2¥ — @) — Alw)) - o — @ || di

-wm%w«Mﬂ—Gmmq

1
<ZU(S/¢)_1[SB2( e — aolly e — woll + the™® — i)l — all &

]

+BMﬁ—MLW~%M

< w(se)t [ SBz(R, Sg -k Hr* — s)(r* — 8) dt + By(R, r¥ — sk)]
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7

< w(sp)-t [ S By(R, &) &t + By(R, ¥ — sk)J

Sk

= w5 ™ () — o(s) + 1t — 5,
=0 s 20 as k- oo,
Hence 2% — g% e J(a,, t*).
That completes the proof of the theorem, ‘
Note that eondition (4) implies that A(z,) = F'(®,). To cover the
case A(wy) # F'(a,), let us assume
M7 (A@) — A=) < By o — 20 ) + b,
M (1" + Uy — @) — A(a))] <

Byry flo — &) + t]ly — @l) = Bi(flo — 2°0) + ¢, te [0, 1]
and

1A= (G(@) — G| < Bylr, [lo — y|)

)3
for all @, ye T(20, 7) U(z° R) with 0 < | — ¥l < B —r, and b +
+ ¢ <1. Let us define the Tunctions

¥

o(r) =a —7r | SEZ(R, 1) dt

K|
l
-6
+

1

(1 + (b + o),
B(r) = wl(r) — o*,
BN =1 — b — By(r),
airy — )
a(r) = @(T); -

and the sequences
Tusr = o = U(F), Tye [0, R], n =0, 1, 2,...
Spp =8 + 0G), 85 =0, n=0,1,2,....

Then following the proof of the Proposition and Theorem 1 we can develop
identical results it B,, B,, By satisty the (a), (b), (e) of the introduction
and o(R) < 0. B
_  Note that in fthis case by selting By =wy, By(r, 1) = w(f) and
By(r, 1) = e(t), our conditions reduce to the Chen-Yamamoto conditions
given in [3, p. 39]. .

Proposition 2. Suppose that the hypotheses of Theorem 1 are true, then

[7(20, ’Oﬁ*l)cD.
' ' 2
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Proof. We have
¥ | = |alr®) — a(t*)| < 1 — 05| = F — pr <,
since
— 1< a'(r) <0 for re [0, #*].
o] < r¥ for any z,e U/ 2, flci)*i - Set|lzg— 29 ==
= 1. The linear operator A(z)~' exists now by (3),H(] 2), and

That is, |z, — 2% <

Az AR | < w(ry),
We now obtain

[4(20)7" (F(z) + Glz) ]

< w (rg)! {S A (20) (I (20 4 #(z, — 20)) — A(29)) |+ llog — 20 dt

0

AR (Glre) — G() + e — 201 a]}

< w(ry)t {S BLy(R, {)dt + B(R, r) -+ vy + ¢ + la¥| — 2‘)-'0}

= w(re)t (a(ry) — «*), which implies that z,e D.

That completes the proof of the proposition.
To obtain further bounds on the distances |y, ; — y,| and |ja* —
— Ya| a8 In [3, p. 44] we generalize the tunction «(r) as follows :
For any ze D, we choose a number », e R,, which we fix and we
define
@, = |[A(2) (F(2) + G(=)) [,

1, if 2 =20 and », =0

d. = _
w(r;)™1, otherwise

and

b(r) == Gl ) ( S B(R, 7, +'1) 4+ B(R, # + 1) —+ )
0
Moreover, let us define the sequence
._U‘Z(Ll)‘, Ly = ()7 T— O, 1’ 2" .
dav(r; + v,)

Then under the hypotheses of Thearem 1 and identically with the
proof of Theorem 2 in [3, p. 45] we can show

Vayy = Oa
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Theorem 2. Suppose that the hypotheses of Theorem 1 are true.
Then

(1) w(r* —7,) <0 and the function (7} has a unique zero v* e [0, r+ -
— 755
(1) the iteration (1) satisfies
l2ny1 — 2n I < Vapr — Cu
and :
¥ — 2z, || < v¥* —w, < ¥ — P M= 0
Jor z, = 2.

To compare our results with the ones obtained by Chen and Yama-
moto in [3] we refer the reader to the introduction and define the func-
tions

o(r) =a —r 4 S w(t) di

r

Dy(r) = gem i,

ay(F) = @y (1) - Gi(r) 4 (b + ¢) )
v () = ay(r) — ¥,
w(r) =1 — wy(r) — b,

vy(7)
wy(r)

u(r) =
and the iterations

Tpyr = T + uy(r,), 1o € [0, ]
and

's'l’H-l — 8;1 + 'ul(s;l); S(; =0, » >20.

If o (E) <0, Chen and Yamamoto showed {3, Th. 1] similar re-
sults and in particulgr

A

l2Znps — 2all < 7hyy — Tay

lon — a@*|| < — 1,

||CU"+1 — @y ” < 81,1+1 - 81’57

and

lz, — a*| < r¥ — sl

We can now justify the claim made at the introduction.
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Preposition 3. Suppose that
(i) «(R) <0 and «(R) < 0;

Tr

(ii) SBZ(R, 1) di - By(R, 1) < Sw(z)dt =L Se(t)dt + (b + o) 7
) 0 0
and
(i) By(R, 7) < wy(r) + b.
Then
w(r) < oy(r),
gy
< pf
s — 2 ll < Payy — 10 <y — Fay
”zn — .CU* ” < r — n < ’1* - 7‘7,17
||£0.”+1 — Xy ” < Sn+1 — § < Sln+1 e S;n
and

Hwn — a¥ ” s —g, < 7':1}: — Sny
rovided that r, = 1. . .
? Proof. Thoe pr(;)of follows immediately using (i), r(n)’ (iii) and the
definition of a(r), «(r), {r,}, {r}, {8}, {82}, {=} and {a,}, » > 0.
3. Aplieations
Let us congider the scalar equation
F(x) + Ha) =0, (22)

z|and let 2y = 1 and B = .5. We define

where ¥(x) = ¢* — 1, G(x) = —
the funections
wy(r) == e'r = w(r),

e(r) = || F(x,)7 ]| = 904837418 = ¢
By(r) = €',

By(r, 1) = e,

and
Byr, t) =q(r — 1), 0 <1 <7 and 0 <r < R.
Then
1,.2
) =@ —r ket g(R )
and

() =( =)@ —1) +a+ ¢
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with
a = 4.678840092-10-3 and b = ¢ — (.

16 is simple calculus to check that all the conditions of Theorem 1
are satisfied,

In particular, «(R) = —.289231 < 0 and () = 362443729 > 0.
That is the Chen-Yamamoto hypotheses given by Theorem 1 in [3] are
not satisfied.

Theorem 1 can now be used to obtain the unique solution #* = ¢
of equation (22) in U(z,, R).
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