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1. Introduction

Consider.a domain Q < [R? and the function fle, 4): Q@ - R. In
many problems the following matter is set : to approximate’ the integrals
of the type:

S Sf(m, y) dwdy=: Inf
0

This paper supplies an approximation (cubature) formula for the
above integral (for a domain Q of frapezoidal form — Figure 1) analo-
gous to the Gaussian formula for the funections of a single real variable,
More precisely, the following cubature formula is established :

Cif = Ay fleae, y,) + Apf(ay, y,) + Asf(as, y3) + Ay f(agy )

with four nodes : (,, ¥,), (@35 Ya)y (3, y;) and (w,, y,) having the degree
of precision 3. Using the three constructive Moller theorems [1] the exis-
tence of the four nodes is proved, then it is shown that they are inside Q.
Their coordinates and the values of weights A4,;, A, A, 4, are determi-
ned next,.

For the facility of calculation we should use further the coordinate
axis system having the origin in the gravity center (which lies on the strai ght
line of equation y = ma, m — y5°/a8°).

2. Determination of Orthogenal Polynomials of degree 2
The sought polynomials (3 in number) have the form :
pHAxy ) = @ + ayw + ay + 4,
Y@, ) = 2y + byw + by -+ b,
P, 9) = 42w+ oy + e
For the determination of the constants : ay by ¢ (i =0, 1, 2), we im-
pose these polynomials the condition that they are orthogonal on the

space of polynomials of degree 1 af most, denoted by [P,. To achieve
this it is enough that they are orthogonal on the polynomial set {1, «, Y} —
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a basis of [P;. The following algebraic systems result :

120, + ey 4 Mg, = — 30
Iy 4 19%, + I0%q, = —I21

(11,0b2 &0l Io,lbl + IO'ObO = 1

(Il"’az + 1%ay + I%qy = —I%°

129h, + IV, + IM0b, —= — 21

Iv1p, 4 192, + 101p, — — 12
IV, 4 I%¢, 4 I%0c, = —10:2
12.002 + 11‘16‘1 _|__ 11.000 = L2
IV, - 9%, 4 ¢, = —[%3

where I = gm‘y’ dQ (the inner product is (f, g> =

Q
the weight function is w(x) = 1)

§

(a)

(b)

(c)

w(x) f(x)g(x) dQ;

I Yol y * \'
’A l D: y=mx
! Dq: y=my¢yp
Ly | 0g y=mgeyg
2
La
2

Fig. 1
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Proposition 1. The integral I™* =Sm”‘y" dQ i calculated with the
Q

relation :

nt+1
Im,u P 1 (’ﬂ/ + 1)[”}13{-1 i (——1)5171/'2”1—‘]3/3.
w —l— 1 i—=0 1
(1)
1 mm+n+ 21 |Z:’
m+n+2 —1i ’
where
R— L3 ‘) .
ml:_a ¢+ b cotw m,::iuﬂ}'-l—b_
b 3 a-+tc¢
- 2
My = —cot o = _'_l_ &+ 20
3 a-te¢
2 2
gaL _1_ a* + ac 4 ¢
3 o+ ¢
Proposition 2. We have the following recurrence relations :
Im_.l,l —u (‘lem‘o (2)
meez Bllnz.o + gzlm—l,o _|__ BSIm—z,o (3)
Im—3,3 - YlIm,O _|__ Yzlm_l,o + ,“,31011_2,0 (4)
with
= T e ) Ly
2
2 oo, 23 ir1
By = g e L ye (e — o b oot «) b oob x|
3 b2 [ 3
m, —m (a — c)(a? 4+ ac + ¢?) 1
?’2:1—*2“?/0:‘ y B3 =—1u5,
3 9(a + ¢) 3
_(my 4 my)(mi 4 m3)
4 9
m: — mi m, -+ m
Yo ==Y, Yo ="y @

Turther, using the recurrence relations (2), (3), (4) too, and solving
the algebmlc systems (a), (b), (¢) the values of the unknows @y by o
result as shown in the Appendix.

Remark. Because of the fact that a, = 0, the zero lines of the poly-
nomial p2? are the straight lines: @ = a;, @ = @,; @,, @, — the roots
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of the equation a? -} ay@ -+ a, = 0, where

— 1 (¢ — ¢)(a® 4 Tac 4 c?)
Qo1 = — o
5{a? 4 4ac + ¢?) { 3(e + ¢)
: (5)
V% (a4 Bae 4 ¢?)2 -+ (0202]} = pg1b
and
" 1 {{1 — )1 A4 Tr -+ r?)
Paa1 = = s
5(1 4 47 4 72) 3(1 1) |
(5%)

| R rﬂ}(r = ca)

Therefore «,,, do not depend on «, but only on & and the ratio ¢/a. This
is an important observation on which the idea of Section 5 is based. The
zero line of p! jis the hyperbola

(@ —A)y — B) = 0
with 4, B, ¢ as shown in the Appendix. The zero line of p%%is a parable,

3. Determination of the Nodes of Cubature formula

The polynomials p?, p*L, p%2 so determined, are in fact a basis for
the space of the orthogonal polynomials of dégree 2, [P,, that is the space
of the polynomials of degree 2 orthogonal on the space of the polynomialg
of degree 1, [P,.

In the subseqnant analysis we shounld use the relatively recent
theoretical results obtained, which are presented in [1].

We shall determine 2 linearly-independent polynomials zero lines
of which intersect each other in four distinet points placed inside Q. In
[1] it is shown that in certain conditions, satisfied in this case, we have
the following minimum number of nodes for a cubature formula C.f
(n — the number of nodes) :

Degree of O, f s % minimal

1 1 1
l 3 2 4|
5 3 7

7 4 12

9 5 17

11 6 24

13 . 7 3

15 8 40

17 9 49

where s is the degree of the polynomials, Tn this case we are placed in
the framed row.
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We shall apply the following theorem (Moller) from [1], para. 5.7 :

Theorem 1. If m ds the largest number of linearly-independent polyno-
mials of [Ps which have zeros ut all nodes of ¢, | with degree (C,f) =28 —1,
then the inequalities

n o> (8 —I; 1)+ ofs, Q)y m <541 — afs, Q)

&

hold, where 2a(s, Q) is the rank of A.

; s+ 1 ;

If n = ( —; + als, Q), then m = s 4- 1 — ofs, Q) and the three
polynomials Py, P, P,e K, (with P, = w Py - yP,) have the common
zeros X, (which are the nodes of CO,f). =

In this paper, because the degree (€, f) = 3 is imposed, s = 2 results,
and therefore we work with the space of polynomials [P, the basis of
which, {p>°plt, p®2 has been determined in the previous section. Matrix
A from the theorem is in this case the matrix.

A= (0 a”) With gy = Io(phipht — p02p2) % 0
oy

Therefore «(s, &) =1 and we impose the minimum number of nodes
n =4. Then m =2 and consequently we have 2 linearly-independent
polynomials in [P, with zero lines which pass through the four nodes.
Proposition 3. The following linear combination
(bicy — Dye)p®(@, y) + a0, y) — @b p(w, y) = Py(w, v)
has an ellipse as the zero line
From the calculations it results :
Py, y) = Da® + Bay + Fy? — G = k(D' - B'ay + F'y2 — @)

where the expressions of D, B, ¥, @, k, D', K, I, G’ are given in the Appen-

«dix. The zero line of P, is the curve of equation ’? 4+ ey + By = Q'

which, beeause all D', B, F', G’ are posifive, is indeed an ellipse. In
Figure 2 we presented a particular case: ¢ — 2l, b =41, ¢ =1, cote = -
=1/3, with I arbitrary.
Let P, : = p2° Obviously, P, and P, are linearly-independent and
the following theorem (Moller) from [1], para. 5.7 ig verified ;
Theovem 2. Let degree (C,f) = 28 — 1, and n — (8 T -+ als, Q).
2

There then existm = 8 41 — a(s, Q) linearly-independent polynomials

P, = ¥ @i =, 4= 1(1)m,
=0

having common zeros at the nodes of C,f with the following properties :

(1) from @@ + yQy = Qo, Qe K, i =0, 1, 2, it follows that @, —

depend linearly on P, ..., P,,



166 Dan-Florin Dumilrescu 6 7 A cubature fornma 167
(id)
(o W1q ... Gy, 0
H &1 ¥ .:1
z l : (-tm,o (—(m,l s 3 a"m,s 0
: l l‘a,nk e e e e e e e 2 s £ . =8 __}_ 2
!
| 0 10 g A5-1 Oy
t
I
0 am.O am.l atafie a’m.s-l a’m.s

(19t) therc ewist exactly 2s—3 a(s, Q) lnearly-independent vectors b e [R3™
such that the polynomial

m " »

—Fh . wz E bﬁPi _I_ 3)]/ Z bm+1’Pl + !/z 2 b2m+iPz'e lP.9+17
i=1 i=1 i=1

= which 1s rewrtiten as
]

k4

Fy =Y L(x)P, L{a)elP, for i =1(1)m ®

=1

In accordance with the following theorem (Méller) from [1], para.

— e e e — e e W Ty = e T eoe A M s e mm T

5.7 :
Theorem 3. If the linearly-independent polynomials P,= Yy} g, PP,
iy j=0
S t=1M)m = s + 1 — «s, Q), satisfy (i), (i1), and (i48) of Theorem 2,
1 then they have n = (S;_ 1) + als, Q) common zeros. If these are real
\ and distinct they can be taken as nodes of a cubature formula Cnf of degree
o —— oy — 1. ]
) _ We can take the nodes (Figure 2): (a;, pi), (%1, Bs), (& Bs)y (&
.v;"/ By) — the common zeros of the two linearly-independent polynomials .
\ /j\\ P,, P, from the present case — as the nodes of a cubature formula : )
L ‘ L 5 ) e
&, ﬁl.) \ WS = A f(ey, By) + Apf(oy, Ba) + Agflecy, By) -+ Ayf(e Ba) (6)
Observation. The Moller theorems do not give effectively the
» linearty-independent polynomials, but only their existence con-
| ditions.
! Proposition 4. Whatever the form of € is (respectively the values of
{ 8- parameters a, b, ¢, «), the nodes (ai, By, 1 =1, j =1, 2; 1 =2, j =3,

4, ewist, and they are real, distinct and belong to Q. &

Fig, 2

4. Determination of the Weights of the Cubature Formula C,f

For the determination of the weights of the cubature formula (6)
we impose the conditions : O;f must integrate exactly the monomials 1,
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@, ¥, o% xy, 4> The resulting algebraic system of equations is :

(A + Ay + Ay + Ay = 100

ay( Ay 4 Ay) - wy(dy + 4y =0

Bid; + Pady + Bsd; | Pydy =0 (1)
ai(dy + Ay + @Ay -+ Ay) = 120

ay(Bidy + Bady) + vyl s+ B4A4):11’1

Bid, -+ B, + B, + Pid, = 1°

Proposition 5. System (7) i compatidle and s solution 1s :

i 1 : r .2
A e T = e o DA sl
pilpe — ) 721 + 1)
£l i Ar .2
A3:A4:A2:_‘_1 = /_'—'_ '+? b
92(91 — 92) 12(1 + )

TFinally, we have the cubature formula

O4f = fIl[.f(&]’ Bl) +f(&l7 BZ)] + JZ([JP(CT‘Z B.i) +f(527 B4)] =

- 1 -+ 4y + r? 1 L5 g —Bus
— = — — [f(ay, By) + (g, Ba) 1 - (8)
2(5, — )1 + 7) { 7

T % [y By) 4 f(3s, 54)]} ab

Remarks

(I) From the way in which system (7) was obtained, it results
that the cubature formula C,f has the precision degree at least 2.

(IT) The weights 4;, A4, are positive, therefore the cubature formula
C,f is positive.

5. Determination of a Cubature Procedure Cp»"i

We gtart with the observation that in formula (5') the expression
for 5, depends only on the ratio 7(r = c/a) and therefore in (8) the shape
of the domain Q is involved only through the agency of ». On the basis
of thig observation we shall construct a procedure of economic cubature.

We shall try to divide the domain Q into subdomains of the same type
which keep r constant.

The straight lines 4 B and A'B’ from Figure 3 intersect in the point
V. We divide the segment AA’ into » equal parts, through the points
Ay =A, Ay, Ag .. A, 4, Ay = A', and join these points with V. We
carry then the verticals V, = AA4", V,,.. .V, V= BB’ such that the
domain Q is divided into m x n subdomains Q% ¢ = 1(1)m, j = (1)n,
all the domains Q¥ stretching on the same abscissa, b;. The subdomain
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14 dbi ;
3:[ Iﬁ,bo'l {le’ 0;[1 laterally from the segments @™, ¢’ Obviously, on the verti-
a:na,log%lf:illy a(:‘, a(J)lie .G(Iula, | and giving up the index j we have a and,

y WL ' DVIOUR ¥y {l.“‘l = 0 1 = 1(1)/”?, — 1. Let us try t . o
mine the sizes b, such that the ratios ¢;/a; ave constant, indepejlrld((a)ngl (?fet'

70|

Trig. 3

Propesition 6. If¢; ja;, = » = ¢o '
< L]0 [0y = p = const. for any v = L(1)m, t =(1—
— o)y byq = pby 1 = L(L)m — 1, wilh p = 7'{/’" -] (Lm, then b, = (1

As a result w 2 ' ‘ing
a result we have the following cubature procedure :

-

9

myangL 1 ""‘ 4 —-l—. 2 non 1
Optf —eer T 20 TP {__ R
205, — e+ 5 21 5 U B+

of e 1 TR =i [
+ 3 B+ O B8 + fa B;J)]}bfa,v
2 _

_ The main remaining difficulty i g
p ‘ , y is the calculat f *di '
Biis4, bub this can be partially eliminated, too. W Satfie ordinates

Proposition 7. The straight li ' 1 iy, Br), (o, B

‘ 1 7. The gkt line which passes through (@

s conourrent with the lines AB, A'B’ (ttht pass thgoggbh(%fl)’ Bll), S
Corollary. The .])o-i'nts Bid, B, for the same Jy lie on the same line @&
Oogsequegtl_y, 1t is sulficient to determine the point Bi7. Then the

o;her p?mts : P Lo 2(L)m, By?y © = 1(1)m vesult from the intersection

of the line de.termlned of ¥ and B} with the verticals of abscissae &

1 =2(1)m, & ¢ =1(1)m. ' V

4 c.—3925



170 Dan-Florin Dumitreseu 10

Bemark. Generally, for an arbitrary division of Q in the subdomains
Q% still of trapezoidal form, we have the following cubature procedure :

Hi,n 1 + 4,'-.1'.]' JI_ (,)-'i.]')Z { 1

T e e | U B+

+ @, BN+ o G, B 4 fal, e} bt 0)
eo

p

The restrictive hypothesis from Proposition 6 simplifies formula
(10) to the form (9) and, taking into account Proposipion 7, the calcula-
tions from formula (9) are much more simple than in formula (10).

Proposition 8. If fe OQ), then fomm_(,m (1'()) (tmplicitly  formula
(9), too, which is « particular case) converges, i.e. lim Of'f = [,f ®

M, N—>00

Proof : Because fe C'(Q), anyone is the subdomain Q4 there exist
E% e Q% such that Sf(x) dQM = QW | f(E8T), and there exist £ e Qi

o1 _
such that f(x) = f(§"7) 4 (& — &/)7 grad f(€%), and consequently

llm.f.f — ¥ A |\ :' Q0 I(E) — 3, AR ; -
i=1 [ =

4

- , |OVIE) — 3 APEN) — 3, AP(x — 57 grad fg) | <

=1
4 4 X . )
<1V — s AP | - f) -+ ( 24) S d(Q) - sup [grad f(x) |,
=1 =1 xeQ
where we wrote d(Q%) = max |x — y|. Because the dégree of the cuba-
x,yeQ'['j
4 X A X
ture formula is 3 we have that Y, Ay = QY| and the term in IF1 disap-

=1
pears. Finally, we obtain the increase :

Touf — ¥, APf(x})

=1

< Q- Q) - sup | grad f(x) |
xc Q)
For the whole domain we have :

4 s 3
Iof — Oprf| = Y Lguif =% % APf(x)
%]

i) =1

4 . ]
lrgl'ijf o E jl{’]f(x}.lj)

1=1

<Y S

1.5

g (Igi.]'f = i A?"f(xf’j))

=1

< 3109 AQY) - sup |grad fx)] < A- Q] sup |avad f(x)|
- ij xgQ xeQ)

where W(; denoted by A = max d(Q%) the norm of the division of Q.

v
It A -0 when m, n — co we obtain the looked for convergence, B
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Particularly, taking m — 5 — or (b =001)...), A -0 when k — oo
and consequently O 1.
Note

(1) For ¢ =0 = ¢ — [ and a=90°,

is obtained.

(1I) For ¢ = ¢ the domain Q becomes of triangular form an d, corres-
pondingly, we obtain a cubature formula for this domain,

the cubature formula for squares

6. Elfeetive Hesulls; Numeries) Experiments

On the basis of the algorithm suggested in formula (9) we construe-

ted a subroutine and wsin g it we tested the conv ergence for the following
test-fanction :
7 2 a
Joyy) =Ji—f ¥ = 7””) (1)
b

Lo(g — Il
¢4 (a —¢) (1 7 )

The exact integral of that funetion is

: 17 fe 4 — ¢ )2
fof = {—if —+ Gl (¢ — ¢4 cote) b cote - ( ¢ ) .

36 6(a — )2 a—¢
1 1 . o - @ :
Frihi——— (6 = axl2 b “ote) b ot « (‘-‘ In = — 1) b
4 (@ — c)? G—c ¢

We considered the particular case for Q: ¢4 — 2,0 =4, ¢ =1, cota =
= 1/3. For these concrete valyes the exact integral of the test-function
considered previously jg

9
Iof :2% (72612 — 473) — 2.238878006
i

Using formula (9) we obtained the following results :

form =—=n=2=1 (3 xn — 1) Cyf = 2147812247

for m = n = 91 =2 (m X n—=4d) (= 2.2327]!750—7-]

for m =n =22 4 (m X n =16) O,f = 2.238185639

for m =n =923 g (m X n =64) O,f = 2238853366
Therefore, only when halving every coordinate (in all, Qis divided
into 4 subdomains) 3 exact significant digits are obtained — the case

boxed. A last remark : the test-function (11) models o 1ift, distribution on
& wing of trapezoidal form.

APPENDIX
6 - O ’ 0 - 9
-%‘30—} A b ¢ = _Ladt C(fe——c—l~2b€30ta);
3 a--e¢ 6 a1 e
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120 b¥(a® + dac - ¢?)
b = — 150 = : ;oo =03
I° 18(a + ¢)?
nag! _ﬂ_ _ 2b(a — o)(a* 4- Tac 4 ¢?) .
: 1290 15(a 4 c)(a? + dac + ¢?) '
=R, 2 W2
b, = BRI 20(a — ¢)(a? + 3ac + ¢?) :
15(a + ¢)(a? 4 ¢2)-
i 41)(6& — ¢)(a? 4 ac 4 ) (a® 4 Gac - c?) _
4 15(a + e)(a® + ¢)(a? - dac 4 c?) !
1
¢y = ————{a* + 2a3¢ + 2ac’® L 4 a® - 4ac + *)a—
0= T Tra o (4 20% - 2aet - ¢ (6 - 400 4 o) a— o+
-+ b cota) b cota} ;
4b(a — e)(a? - 3ac - ¢?)
¢, = — m ;
15(a + e)(a? 4 ¢?)
2((1« . C) s 2.9 9
Cy = — {—a*c*(3a* 4 dac+3¢2) -

bb(a -+ c)(azui|— e (a® + dae - )
(a* + Tale + 10a%® + Tac® 4+ (e — ¢ 4+ b cota)(d cota} ;
A= —b; B=—0by; C=0bby—b, =
il b2(a + ¢)* 4 4a?c?]? B8

50(a -+ e)¥(a* + ¢2)*(a® + dac |- ¢?) '
D’'=a*-5aPc+3a2c*H-5ac - * - (a?4-Tac-c?) (@ —c 4 b cota)b cota H
B = b(a* 4 Tac 4 ¢*)(a — ¢ 4 2bcota) ;
" = b¥a? + Tac 4 ¢?);

G’ 21—15 b¥a? + ac + ¢*)(a¢® + 6ac - c?)

d(a — 0)*(@® - 3ac - %)
9.25(a + ¢)¥a® 4 ) (e’ + dac 4 c?)

k= )
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