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L. For fe Cla, ] and h > 0 let

o (f, h) = sap {|fle + 1) —fl@)]:0 <i<h, @, 2+ te [a, b]}
wgf, 1) = sup {|f(e + 20) — 2f(a + 1) + f(2)]: 0 <t <h,
%, © + 2te [a, b].

The moduli of smoothness o, and w, are frequently used in quan-
titative Korovkin approximation. H.H. Gonska ([3], Lemma 2.6) esta-
blished

(1) wlf, B < (3 ta? =
. [

a

) wylfy B)

for all fe Cla, b] and 0 <k < b — q.
(-1 is the uniform norm.)
In the proof of (1) he used the inequality

6h
—— /]

@) 9] < —2— gl -+ (b — a)g"|
b — a

valid for every ge O%a, b]; see also [2], Lemma 7.

In fact, for g € O%[a, b] the following inequality of #. Landau holds ~
(see [4], 3.9.71) :

- Me -2 g e
(3) g’ Il < P g Il - 5 II.{I I

If (3) is used instead of (2) in the proof of Lemma 2.6 in [3], we
obtain for all fe Cla, b] and 0 <% < b — q,

(4) oilf, B < (3 + ”—»‘h-i‘») o (f, 1) +

52

b —a
2. Let p and ¢ be real numbers such that

(5) I < pIfll -+ alf”|
for all fe 0%[a, b].
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It is known that p » —=

- ; moreover, if
b—o

. 2 - .
Let us remark that even if p > PR we have necessarily ¢ >

b —

=

@ . 3 2 }
- . Indeed, for a given p > TR let us consider the function

[N

b —a b —«a

fle) = a* — 2aw - 2ab — b% Then (5) implies ¢ >

We shall present an improved form of (3).
Theovem 1. Let o <y <2z < b and fe O (@, b]. Then

3 — ¥ 2
. (L, t >0
Proof. Let o(f) = 0'% < ¢
For all #, te[a, b] we have
(7) J0) = flz) + f(@)t — @) +

b

—{—S [o(w — %) — ol — O] — w)f”(w)du

Using (7), it is easy to obtain

1f(2) — fly)]
7 —y

/") < 3

14
i —l—s (e = polu — @) + (5 — wolu—y) — (2 — w)o(u —2)| du
Z—y
The coefficient of | f"| equals

9 2 — 2
L__,ifaSmsy;

——[(* —y)* + (v —2)2], if y <2< 2;
2(z —y) ’

20 —y — =

5 y itz <2 <b.

Now (6) follows immediately.
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Remarks. (1) The above proof gives us, in particular,

] — f{—_ .2 2
2a 2a
for all fe (®[ —a, o] and all ze [—a, @]
(See also [5], 9.2.87).
(ii) For y = 4 and 2z — b, (6) becomes
®) < YRSl bma
5 J

b —a

(iii) Let 0 <nh < b — 4. Choose ¥ and 2z such that 2 — ¥ =h,
¥+ 2=wa-+ b From (b) we obtain
b —a i
2 i

4 Let A: Ola, b] - Ofa, b] be a positive linear operator. For
fe Cla, b]let Lf e Ca, b] be the unique affine function which coincides
with fon a and b. Let 4* be the Boolean sum of the operators 4 and I,
that is, A* =4 4+ 1 — Ao L. 3

Write e(t) =1, 4+ =0, 1, 2, ie [e, B].

The following theorem improves a result from [17.

Theorem 2. For all g e Cla, b] and o < x < b we have

[A%(g 5 @) — g(a)| <

<[(b~a)2 b —a

171 < %wl(f, B+ Iy

5 e ) — 114 2=

lA(ey — ;@) | +

+ 15 Al(e, — @)% m)] lg™" |

Proof. Let f =g — Lyg. Then, for all te [a, b],
0 = fl@) + flayt — o) + S(t — w) f(u)du

X

It follows that
A(f; @) = fla) Aley; @) + f(x) Ale, — @3 ©) -

+ A4 (S(t —u) f(u)dw; W)

Since A is positive we obtain

(5 @) = J@)] < 1J(2)]|Alo; 2) — 1] + [f(@)|[Ale, — @ 2)| +
+ .JZL A((e, — 2)%; @) ||
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Now f(a) = f(b) =0 and hende (8) yields

I < 4 2— ¢ If'"1l. We deduce that
A% (g5 @) — g(o)| = |A(f; @) — f(@)] <
<71 Afeq, @) —1 [+ 2 ga If 1Ae, — 25 @)] +%A((61 — @)% @) |1l
To finish the proof, it suffices to remark that " = ¢’" and ||f] =

b'f—a)

—lg — Lg| < ‘Tzng”n.
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ON NEWTON’S METHOD FOR OPERATORS WITH HOLDER
CONTINUOUS DERIVATIVE

TOAN LAZAR
(Cluj-Napoca)

1. Introduetion

In this note we are interested in completing some results concerning
the convergence of Newton’s method for solving operator equations in
Banach spaces, when the first Fréch et-derivative of the operator involved
is only Holder continuous. '

Using the Rheinboldt’s majorant prineiple, I. Argyros [1] establi-
shed hypotheses which provide the convergence of the method and the
existence of the solution of the equation. Under the same assumptions
a8 in [17], T. Piviloin [4] obtained, moreover, the uniqueness of the soly-
tion and the error estimates,

' Our result improves the assumptions and the conclusions from
[1], [4]. In the case when Holder condition is the Lipgchitz one (p==1),
we can reduce our theorem to the Kantorovich theorem [3].

In [2], P.J. Deuflhard gave suificient conditions which guarantee
that Newton’s method can be applied in solving the equations which
appear in the implicit Euler’s method for a System of ordinary differential
equations. We shall use our theorem for this problem in the same way
as in [2]. An example ig also Pprovided.

Let X and Y be Banach Spaces and let us consider the operator
F:DcX Y. For solving the equation

(1.1) Flz) =0,
we consider the N ewton-Kantorovich iterations
(1.2) Payr = Too— [F'(2,) 7" F(z,), n = 0,1, 2,...

where [F'(z,)]-te I Y, X) (the Banach space of the bounded linear
operators from Y to X).

Asin [1}and [4], here we only assume that # is Fréchet-differentia-
ble and F'(.) is Holder continuous. '

We shall give sufficient conditions. which Pbrovide that the sequence
(®u)nen is well defined and converges to a solution of (1.1).

We say that F'(-) is Holder continuous over a domain # if for sonme
¢>0, pef0, 1], and all @, Yy € H, o fufe g

(%) — F'(y) | < o a:— y .
In this case, we say that F'(.) e Hyle, p).



