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1. Introduetion

In this note we are interested in completing some results concerning
the convergence of Newton’s method for solving operator equations in
Banach spaces, when the first Fréch et-derivative of the operator involved
is only Holder continuous.

Using the Rheinboldt’s majorant prineiple, I. Argyros [1] establi-
shed hypotheses which provide the convergence of the method and the
existence of the solution of the equation. Under the same assumptions
a8 in [17], T. Piviloin [4] obtained, moreover, the uniqueness of the soly-
tion and the error estimates,

' Our result improves the assumptions and the conclusions from
[1], [4]. In the case when Holder condition is the Lipgchitz one (p==1),
we can reduce our theorem to the Kantorovich theorem [3].

In [2], P.J. Deuflhard gave suificient conditions which guarantee
that Newton’s method can be applied in solving the equations which
appear in the implicit Euler’s method for a System of ordinary differential
equations. We shall use our theorem for this problem in the same way
as in [2]. An example ig also Pprovided.

Let X and Y be Banach Spaces and let us consider the operator
F:DcX Y. For solving the equation

(1.1) Flz) =0,
we consider the N ewton-Kantorovich iterations
(1.2) Payr = Too— [F'(2,) 7" F(z,), n = 0,1, 2,...

where [F'(z,)]-te I Y, X) (the Banach space of the bounded linear
operators from Y to X).

Asin [1}and [4], here we only assume that # is Fréchet-differentia-
ble and F'(.) is Holder continuous. '

We shall give sufficient conditions. which Pbrovide that the sequence
(®u)nen is well defined and converges to a solution of (1.1).

We say that F'(-) is Holder continuous over a domain # if for sonme
¢>0, pef0, 1], and all x ye kb, o fafefd

(%) — F'(y) | < o a:— y .
In this case, we say that F'(.) e Hyle, p).
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We will need the folowing vesult whose proof can be found in [3].

Lemma 1.1, Let P: X — X and D< X. We assumethat D is open and
that P'(-) ewisls at each point of D. If for some convex set I <= D we
have P'(.) e Hy(e, p) then

Va, ye I, |P(x) — P(y) — P'(y)(x — )| < & — g

¢
14+9p
2. Results

Concerning equation (1.1) and iterations (1.2), we can give the
following

Theorem 2.1. If F' 4s i'réchet-differentiable on S(x,, 1) ={xc X | —a,| <
< v} < D and if there exists k > 0, 4> 0 end p € ]0, 1] such that

(2.1.3) ar, : = [F'(z)]te LT, X);
(2.1.b) T E() ] < 7

(21.0)  |To(F'(2) — P < Klx —y|°, Vo, 5 e Slag 1);
P

and v = (L 4 pn.
14 p '

(2.1.d) he=Iq"<

Then
The sequence (24)nen given by (1.2), iswell defined, remains in S(wx,, 7)

h

and converges to a solution a* of equation (1.1). By
The solution x* of (1.1) is wnique in S(wxy, v) if r <K ¢,
The following estimales are true
(2.2)
1 (1-p*-1

¥ — @< L + Py [QA +p)Vh] *» , 0=0,1, 2 ..
(L —p)ve
Proof. Let us consider the operator P: D = X — X, P(z) =« —
— [y f(x). We observe that the first iteration of (2.2) can be written as
(2.5.3) @ = Play,),

and, since I is Fréchet-differentiable over S(z,, ) it follows that P is
Irréchet-ditferentiable over S(xy, v), and

(2.3.b) YeelS(ay v, Pla) =1 — 'y (a).
Now using (2.1.c) we get
(2.3.¢) @, ye 8wy ), [P(x) — Py = Tola) — Py} < Kl —yl*

that is, P’(.) is Holder continuous over 8(z,, +).
Using (2.1.b), by (1.2) we have

(2.4.9) ey — %l = [T (x) | € n <<v, thus @, e 8(x,, 7).
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80, I’ is Fréchet-differentiable in @y, and by (2.1.c), (21.4)

I — To(@) | = (To(f(2,) —
— P@)l< Koy —al? < Ky < —P_
T+p
thus
(24D) AU : = [Tpl"(w) ] e I{X, X) and |U| < — 2
1 — Ky
which implies
(2.5.a) Ay = [F(w) ] e (T, X) and T, = 0T,
Now from (2.3) and Lemmsa 1.1 we have
Lol (@) | = Yoy — Pla) | =|[P(2) — P(x,) — Plag)ay — my) | <
K N
S Tl s iy
1+p 1L4p
and, by estimates (2.1.¢), (2.4.b)
(250) & o) | = [UToF ()| < |0 [Ty < - L K

1T+ p1—Kyp
also, for all g, y € Sy, ),

(25.0) IN(E(@) — @Y I<ITT T E(@) — £ @) < —D— s — .
1 —Xy?

From assumptions (2.1) we obtained relai ' i i
y sumplions (2.1) w btaine ons (2.5), that is, giver
(7(-20 it-&foll(%“is l:,)h.at gslés 2well defined by (1.2). Since (2.5) 2’01‘6 similérgwit}}
d.a -1.0) and (1.2.¢), we shall conti : ; ;
o e ), shall continue as above, from a, to Ty
First let us consider the sequences (K 0y (1 ick
are defined by the recurrent relations adaer () #i1d (Anloen which

Moi=n Ko: =1, hy: = Kypp = hg —L_

L4 p
(2.6.a) o = —— Al K, = — Ko
14+p 1—Koymi,’ 1 — Kaymi,

hy = I{n"ﬁg, " = 1,2, Ceey
which can be written

(2.6.1) SRR N U5 ISR
1+p 1_‘hn—\] 1—’};-1,
1 h 1+
hn o n=1 —
1 +pp (1 _‘hn—l) y 1,2,....
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We have the following inequality
(2.7) Vpe[0,1], p*(1 + p)r <1,

since the function f : [0, 1] =R, f(p) = plnp 4 (1 — PIn(t 4 p)is convex,

lim f(p) =0 and f(1) =
-0

y We obtain

From %, <

(2.8) (I + phg < p"(1 4+ p)-7 <1
and
g ol o
(L4 p)P (1 — hg)i*
thus, by (2.6.b)

hy < (1 4 p)hite.

We observe that k< [(L 4 p)hZlh, < by < Ttp’

8o, we can easily get (by induction)

P L
(29) hn< (1 + p )h%t? and h’n < 1 er y W _1’27 T

which imply :
(2.10.2) ha S (1A gyttt ) Ppaanp
(1 i—ﬁ)’”-—l . I ]_‘ VIR, g .0 h
= (L+p) »  Ko+A :———(1 T g [(1. + p)Vh | ) 1,2,
and by (2.6.b)

M - (hn . ) < h’nd.lﬂﬂ-—] < h’"“l T hlhono,
1 - P ’n*l

thus ”
( *rﬁ) —1 .
— [(1 + p)¥7h] T s #=0,1,2,

1
£ N - i
(2.]0b) n n (1 _,_ p)n/p

Now, by induction, we shall prove the following, for all ne N ,

(2.11.a) #y € 8(y, 1) and AV, : =[F"(x,)] e I/ Y, X);
(2.11.b) Wl (@) || < 03

(211.0) TW(F(2) —~ F'(y)]| < K,lle — y|P, Va, y e S(ag 7).
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From (2.1) ang (2.5) it results tha,t (2.11) hold for n — 0,1. We

assume that (2.11) hold for j — 1,2

(2.11.b) we have

% — 1. Then using (2. 10. b) and

#—1 n—1 £ +P)k"1

mr~mmﬁw%rww ST <y g

a+pw

Further, py (2.8) and (1 + P >1 + Pk, Yee N

n—1

1
I —ml<n g

thus, 2, e S(ay, r).

[+ p)vamy =y e

i <(1 <r
P T A+ p)y

According to the recurrent relations (2, 6) we can easily obtain
that the rest ot (2.11) are true for k — n,

Now we shall prove that;
all m, ne N, we have

(Zy)uen is a Cauchy sequence. Indeed, for

fd-m—1

”mn+m — @ ” < Z ”mlci—l — T ” <
k=n
Nt-m—1 ntm—1 1 (1+If‘)k—1
< < T v [ R BIVER] 2T
‘Z"; t=n (1 - p)ue

g 1+ p) (+m)/p

and, by (2.8) and 1+ p)k >

m—1

”xn+m — &, ” Z

i ] (
=y s}
e CEROIY

< -
1 (1 p)u/l)

m—1 . fm
Finally, smce)_“, pe— L= b

r 1~7

(212)  |@pyn — 2] < (1 + Pl

=31 + p)tnp

(14 p)'n+lo 1

[+ pyuemy] 7
1 —l—pk, Ve ¥
[(L  puoyp 2 Cesnt

p)”-l n—1

1 1pp, 11+ <
& W piny LA+ p)/rn] <

(+p -
(L +pyon) % 5 g

<A -+pa — ") we find

) —1

(1+2
[+ pU)h) ™o (1 — g,

1
@+ pp7

therefore, using (2.8) it results that (Tunen is Cauchy, hencs it ig conver-

gent.

Let o* = lim #,. From (2. 12), for % =0 and m — oo we gel

n—00

o — @l <+ )y < v, thuy o e Sy, 7).
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Iterations (1.2) ean be written

(213) lﬂ( n) "I_ jﬂ’(qn (an+] - .’L'.,,) - 0
Sinee for all ne N
1B (@) | < M (o) | B (20,) — F'(2o) | < I (o) ||~ 1 (a00) Uo(F"(220) —

— (@) || < " (00) |1 + K flww — 20 |I") < [F"() I - J77).
it follows that the sequence (F'(x,)).ex 18 bounded, 2o for » — oo in
(213) we get
B(a*) =0,
that ig, a* is a solution of equation (1.1).

Equation (1.1) is eqguivalent with the equation = = P(x), so, @
1

is a fixed point of P in S(a,, #). I 1 < K 7 then for all ze Sz, 1) we
have

[P () | = 1 — Tol"(@) ) = |Do(F"(2) — F'(a,) || < Ko — a|” <
< KHr? <1,

&

that is, P is a contraction over S(z, ), so the fixed point a* of P is

unique in S(x,, r). Hence, the solution #* of (1.1) is unique in S(xy, 7).
By (2.12) for m — co, there result the ervor estimates (2.2).
Observation 2.1. For p =1 in the above theorem, the assumptions

and the conclusions can be reduced to the Kantorovich theorem [3].

Applieations

At each step in Implicit Euler’s Discretization for solving a system
of ordinary diferential equations we must solve an equation of the form

(3.1) By) =y —y° — Wly) =0,

where #°e R”, h >0 and f: D < R"™ -~ R™

In [2] P.J. Deuflhard gave sufficient conditions which provide that
Newton’s method can be applied to equation (3.1). One of the basic assump-
tions in [2] is that f'(-) is Lipschitz continuous. Here we assume that
f'(.) is only Hélder continuous, and then Newton’s method can also be
applied.

Newton’s iterations for (3.1) are

(3.2) FUgh) (gFt — ) = — H(h), k=0, 1, 2,

that is

(3.3) (I — mf' (¥ N(Y*t — ¥y = —(* — 9 —My"), k=0, 1,2, ...
Let (.,.) be the scalar product of R™ and |- || the associated norm

of (.,.). Let A1 = f'(%%). Concerning equation (3.1) and iteration (3.3)
we can give
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Theorem 3.1. If fe CND) and ¢ " ‘
and peq01] 1o ha J ) if for some peR, Ly>0, I, >0

(3.4.a) (u, Au) < plu, u) = ‘uI!u [% YueR™;
(3.4.b) () F <
(3.4.c¢) I (w) — f'(e) I <Ly e — vl?, Yu, ve D,
then for D sufficient large the Sequmzce (y*
Y )ken given by (3.
a umque solution of equation ( )y for allkiez\>J0 wlmch(sa?z)scfgéwm% N
(3.4.q1) h ((1‘b@tm7y, if p7r < -1,
(3.4.e) b bounded, h < — LIPS it p= > —1
s (L + um) ’ v 3
-2
P

where ©: = [(1 + 1 LngJ

\ D)
Proof. We shall apply Theorem 2.1. From (3.4.d), (3.4.€) we get
(3.5) pwh << 1,
Indeed, if pT< —1 then <0, thus uvh <1, and

it uv > 1 then h < —° , thus vh<1 ey < 1.
1+ pr)’ T
Let (I —hd)z =0, or 2 = hdz, Using (3.4.a) we get
(2, 2) = (2, A2) < phllz|?, or (1 — uh)|e|P<

and by (3.5), it results z = 0, hence the matvix I — hA is non-

Y (3. — singular,
I%gcause iy =T — hIJ, it follo“s that there exists i
[F(#°)171, so (2.1.a) holds true.

Now let z: = [H(y°)]-* F(%%). Then
(I — hA)z = Rhf(y°)
and
(3.6) (2 (I — hA)2) = (z, hf(y°))
From (3.4.a) the following estimate is true
(&, (I —hd)2) =|z|? — I(z, Az) > (1 — ph) |z |2,

which implies, by (3.4.b) and (3.6)
i,

(3.7) fiz |l < —2—
1 —yuh

=i

S0 we have an estimate for (2.1.b).

We S]mll“ll]V proceed for (2.1.c). For all wu,ee D, let

LY i 1 g 5 J.C). & gi=
— [F"(y*) 2 (J"(u) — }'(1)). Then A

(I — hA)e —= R(f'(v) — f'(u)),
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and using (3.4) we get

(3.5) o< o,
I —ub
s0 we have an estimate for (2.1.¢c) with K : :% R
Now we put condition (2.1.d)
145
P = L, P} —*h < ' =y
1 —ph 149
or
) -1
LI ( 141 LIL%;]“'P — 7,
1 — b P
equivalently with
(3.9) A4 po)h < 7.

We observe that from (3.4.d) and (3.4.e) inequality (3.9) is true. So,
for D sufficient large we can apply Theorem 2.1, and thus the theorem
is completely proved.

Numerieal example

Let us consider the system

(3.10) P

with the initial values

(3.11) {y(()) =

2(0) = 0.

Problem (3.10)—(3.11) has a unique maximal solution (y(1), =(1)
which is defined over [0, 7[. We observe that y'(f) > y(¢) and 2'(t) > 0,
hence (y(t), 2(1)) e [1, co[ X [0, co] = : D, forall te [0, 7'[. So, problem
(3.10)—(3.11) can be written

XU(1) = fLX@), ¢
X(0) =7,

where X(t) = (y(t), 2(t)*, 7 = (1, 0)7 and

A\

(3.12) { v

4 4
FiD =R fX) =(y + 2% 47 +1)7, VX —(y, 2)" e D.
The Implicit Huler’s Discretization for (3.12) on the interval [0, 7]
(1" < 2) is -
(3.13) Noor = X+ 0 flX ), n=0,1,..., N —1,
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where X, = % and 0 = b <H<<...<ty = T"1is a div ision of [0, T"]
. N o= S 4 2 and
by = X#e_ itl,” 7{; =0, 1, (3’1?3 —Nl. We shall approximate X(t,,), by X,.
ach step » in (3. Newton's iterati "dli
B T ! § iterations (according to (3.3))

(3.14) (T — hof((XB)Y( X — ¥ — (X% _ ¥, _ g, fXY), k=0,1,2,. . .,

where X° — X, We shall approximate the exact soluti

e X’"‘,.for i s GuT olution X, of (3.13)
First, let us verify the assumptions of Theorem 3.1.
The function f is differentiable over D and

1

f L
1 : 2°
J(X) = 1 ’ VX:(.’/; &) e D. =
3!
Let (.,.) be the Euclidean scalar product in R*and |- || the Euclidian

norm. For all u = (y,, %,)" € [R? we have
1

1
7 3 . 3 T
(u7 f (Xn)u) 5 ((uh uz)T7 (ul + ‘;‘zi U, é‘ 7/n3 ’l-tl) ) =

1 1 1 1

1 i 3 L
= f s < 14 27 I

1 1

thus (3.4.a) holds true with w=1-4 E(1/3—]— z,sj)
5 v

4 4
gﬁr (3.4.D) let Ly: — |If(X,)| = V(yn+zi>2+<y3+ 1),
e norm of a matrix A4 is the square root of the gpectral i
of the matrix A%A, 'since the norm in [R? is the Euclideﬁn Ifgrrfladé%s

for all X, = (1, 20)7, X, = (9, 2,)" € D we have N
3 1
4: —_— et
0 o (25 — 2)

IFCXL) — f(Xy) 1= =

1 1
—34—(3/‘1‘ —yz) 0
e I
= 5/ max {loi — vl |8 — 22 [ =
1 1 1 1 1 L

4 fWE _ ) 3 & 4 L 4
"gma‘x{,yl Yl | — e I} <§‘n1ax{’y1‘y2"3; 7 — 2]’} <

1

b 1
S 3 = X

S--t 99K
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4
hence (3.4.¢) holds true with I, : =—3— and p = ;—.‘Ne observe that

f'(+) is not Lipschitz over D.
1 3
Further let 7 : — [(1 + X )Lng} Pt (1?6 bE: ) ‘. If we take &,
P d

such that condition (3.4.e) holds, that is, h, < (11‘_), then the

—uT
assumptions of Theorem 3.1 are verified. So, equation (3.17) has a unique
golution and (3.14) is equivalent at each step % with

(3.15 XHH = XF  AG(XF — X, — f(XY)
’

where A® : = (I — h,f'(X*)-1,
From (2.2) it results that

i 1

e 4 3
I = Lol < @+ pE? = Ko
where K :h"—Ll, n = M(from Theorem 3.1). We can take
1 — ph, 1 — uh,
4 5 16 5 hy \7 :
h, such that-—Kn® — <0 18 (—— ¥ < 0.001, that is, A, < —
3 9 \1 — pbh, 1+ py
0,601 \%7
where y = fé_— | . Inthis case after few iterations we are able to give
o

a good approximation for X, ;.
In conclusion, we must choose &, <y, to approximate the solution

1+ v

1—Y—) for computing the exact solution of (3.13) by (3.14).
—_— ‘\(

pLIf we take by = 0.005, 7" = 1.6 the error approximate in Implicit
Tuler’s Discretization is bounded by 0.05 (since the Tipschitz constant
for /' is bounded by 5 (1" = 1.6)), and if we make only four Newton’s
iterations (3.14) the error approximate in Newton’s method will be houn-
ded by10-*. 8o, we approximate y(f) and z(?) after n steps with v, and
respectively z,. The results are the following :

of (3.12) by the sequence (X,)¥_, given by (3.13),and h, < min(

{ n Yau Zn
0.2 40 1.2439128 0.4208817
0.4 80 1.6518907 0.9453747
0.6 126 2.3364999 1.6503587
0.8 200 3.4621378 2.6672811
1.0 333 5.3822479 4.3030416
1.2 593 8,7545576 7.1444071
1.4 1160 15.1691941 12.6319697
1.6 2560 28,7283590 25.5428536
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