ON THE STRUCTURE OF THE SET OF POINTS DOMINATED AND NONDOMINATED IN AN OPTIMIZATION PROBLEM

LIANA LUPȘA, EUGENIA DUCA and DOREL I. DUCA (Cluj-Napoca)

Let $(X, +, \cdot, K)$ and $(Y, +, \cdot, K)$ be real or complex linear spaces, let S be a nonvoid subset of X and let T be a nonvoid subset of R.

Let $f: X \to Y$, $g: X \to \mathcal{P}(Y)$, $h: T \to R$ be given functions.

Definition 1. An element x of S is said to be a nondominated point of S with respect to f, g, h iff there does not exist any point $z \in S$ such that

(1)
$$f(x) \in h(T) \cdot f(z) + g(z).$$

In the following, E(f, g, h, S) will denote the set of the nondominated points of S with respect to f, g, h, and

$$P(f, g, h, S) = S \setminus E(f, g, h, S)$$

will denote the set of the dominated points of S with respect to f, g, h. We have

 $P(f, g, h, S) = \{y \in S : \text{there is } x \in S \text{ such that } f(y) \in h(T) \cdot f(x) + g(x)\}.$

Remark 1. a) For $Y = R^m$, $h: T \to R$ defined by h(t) = 1 for each $t \in T$ and $g: X \to \mathscr{P}(Y)$ defined by $g(x) = R_+^m \setminus \{0\}$, for all $x \in X$, the set E(f, g, h, S) coincides with the set of Pareto minima.

b) For $h: T \to R$, h(t) = 1 for all $t \in T$ and $g: X \to \mathcal{P}(Y)$ defined by g(x) = D for each $x \in X$, where D is a given subset of Y, the set E(f, R), E(f, R) (see [3]).

If $x, y \in X$ and $x \neq y$, then we denote by

$$[x, y] = \{(1 - t)x + ty : t \in [0, 1]\},$$

$$[x, y[= \{(1 - t)x + ty : t \in [0, 1[]\},$$

$$]x, y] = \{(1 - t)x + ty : t \in [0, 1]\},$$

$$]x, y[= \{(1 - t)x + ty : t \in [0, 1[]\}.$$

Theorem 1. If

(i) $f: X \to Y$ is an affine function;

(ii) S is a nonempty convex subset of X;

(iii) $h: T \to R_+$ is a function such that $[1, h(t)] \subseteq h(T)$ for each $t \in T$;

(iv) for each $x, u \in S$ we have

$$(1 - r)g(u) \subseteq g\left(\frac{r}{r + (1 - r)h(t)} x + \frac{(1 - r)h(t)}{r + (1 - r)h(t)} u\right),$$

for all $r \in]0, 1[$,

then the following assertions are true:

(a) If $x \in S$ and $y \in P(f, g, h, S)$, then $]x, y] \subseteq P(f, g, h, S)$. (b) If $x, y \in S$ and $]x, y[\cap E(f, g, h, S) \neq \Phi$, then $[x, y] \subseteq E(f, g, h, S)$

(g, h, S). (c) If $x, y \in S$ and $]x, y[\cap P(f, g, h, S) \neq \Phi$, then $]x, y[\subseteq P(f, g, h, S) \neq \Phi]$

 $g,\ h,\ S).$ Proof. (a) Because $y\in P(f,\ g,\ h,\ S),$ there are $u\in S,\ t\in T$ and $d\in g(u)$ such that

$$f(y) = h(t)f(u) + d.$$

Let $r \in [0, 1[$. Since S is a convex set and $x, y \in S$, we have

$$(3) rx + (1-r)y \in S.$$

Because f is an affine function, from (2) we get

(4)
$$f(rx + (1 - r)y) = rf(x) + (1 - r)f(y) = rf(x) + (1 - r)(h(t)f(u) + d).$$

Taking

$$(5) \qquad k = \frac{r}{r + (1-r)h(t)}, \quad \text{where } k = \frac{r}{r + (1-r)h(t)}$$

it is easy to see that

$$(6) \qquad 0 < k \leqslant 1.$$

Because $r + (1 - r)h(t) \in [1, h(t)]$, from (iii) it follows that there is $t^0 \in T$ such that

(7)
$$h(t^0) = r + (1 - r)h(t).$$

From (5) and (7) we have

$$h(t^{\circ})f(kx + (1 - k)u) = [r + (1 - r)h(t)] \cdot \left(\frac{r}{r + (1 - r)h(t)}f(x) + \frac{(1 - r)h(t)}{r + (1 - r)h(t)}f(u)\right) =$$

$$= rf(x) + (1 - r)(h(t)f(u) + d) - (1 - r)d,$$

and by (2) it results

$$h(t^{\circ})f(kx + (1 - k)u) = rf(x) + (1 - r)f(y) - (1 - r)d = f(rx + (1 - r)y) - (1 - r)d.$$

Hence

(8) $f(rx + (1 - r)y) = h(t^{\circ})f(kx + (1 - k)u) + (1 - r)d.$

From (6), since
$$d \in g(u)$$
 and we have (iv), it follows
$$(1 - r)d \in g(kx + (1 - k)u).$$

Now, (8) and (9) imply

$$f(rx + (1 - r)y) \in h(T)f(kx + (1 - k)u) + g(kx + (1 - k)u).$$

But $kx + (1 - k)u \in S$. Hence

(10)
$$rx + (1 - r)y \in P(f, g, h, S).$$

Because for all $r \in]0, 1[$ we have (10) and $y \in P(f, g, h, S)$, we get that $]x, y] \subseteq P(f, g, h, S)$.

(b) If $x \in P(f, g, h, S)$ or $y \in P(f, g, h, S)$, by (a) we get

 $]x, y[\subseteq P(f, g, h, S), \text{ which contradicts }]x, y[\cap E(f, g, h, S) \neq \Phi.$

Assume now that there is $w \in]x, y[\cap P(f, g, h, S)]$. Then, by (a), we have

$$]x, w] \subseteq P(f, g, h, S) \text{ and } [w, y[\subseteq P(f, g, h, S).$$

These inclusions imply

$$]x, y[=]x, w] \cup [w, y[\subseteq P(f, g, h, S),$$

which contradicts $]x, y[\cap E(f, g, h, S) \neq \Phi]$. Hence $[x, y] \subseteq E(f, g, h, S)$.

(c) Assume, by contradiction, that there exists a point $w \in]x, y[$ such that $w \in E(f, g, h, S)$. Then by (b) we have $[x, y] \subseteq E(f, g, h, S)$. Hence $]x, y[\cap P(f, g, h, S) = \Phi$, which contradicts the hypothesis $]x, y[\cap P(f, g, h, S) \neq \Phi$.

Corollary. 1. If (i)—(iv) are satisfied, then the set P(f, g, h, S) is

Proof. Let $x, y \in P(f, g, h, S)$. Applying Theorem 1, (a), we get -

$$]x, y] \subseteq P(f, g, h, S).$$

But $x \in P(f, g, h, S)$. Then $[x, y] \subseteq P(f, g, h, S)$.

In the following we give three examples which satisfy (iii) and (iv). $Example\ 1$. Let $T=[0,\ 1]$, let $h:T\to R_+$ be defined by $h(t)=t^2$ for all $t\in T$ and let $g:X\to \mathscr{D}(Y)$ be defined by g(x)=A for all $x\in X$, where A is a nonvoid subset of Y which has the property that $[0,\ 1]$. $A\subseteq A$.

Obviously h([0, 1]) = [0, 1] and for any $t \in [0, 1]$ we have

$$[1, h(t)] = [h(t), 1] \subseteq [0, 1].$$

Also, for each $x, u \in X$, we have

$$(1-r)g(u) = (1-r)A$$

THE RESERVE AND THE

and

196

$$g\left(\frac{r}{r+(1-r)h(t)}x+\frac{(1-r)h(t)}{r+(1-r)h(t)}u\right)=A.$$

But $(1-r)A \subseteq [0,1] \cdot A \subseteq A$. Hence

$$(1 - r)g(u) \subseteq g\left(\frac{r}{r + (1 - r)h(t)} x + \frac{(1 - r)h(t)}{r + (1 - r)h(t)} u\right).$$

Example 2. Let T=R, let $h:R\to R$ defined by h(t)=1 for all $t\in T$. Let X=R, Y=R, $S=R_+$, and let $g:R\to \mathscr{P}(R)$ be defined by $g(x)=[0,\ x]$ for all $x\in R$.

Obviously $[1, h(t)] = \{1\} = h(R)$.

For each $x, u \in S = R_+$ we have

 $(1-r)g(u) = [0, (1-r)u] \subseteq [0, rx + (1-r)u] = g(rx + (1-r)u) =$

$$= g\left(\frac{r}{r + (1-r)h(t)} x + \frac{(1-r)h(t)}{r + (1-r)h(t)} u\right).$$

Example 3. Let $T = [1, +\infty[$ and let $h: T \to R$ defined by $h(t) = t^2 - t + 1$. Let $X = R^n$, $Y = R^m$, let S be a nonvoid convex subset of R_+^n and let $g: R^n \to \mathcal{P}(R^m)$ be defined by

$$g(x) = \{y \in R^m_+ : \|y\| \leqslant \max \{|x_j| : j \in \{1, \dots, n\}\}.$$

Obviously, for each $t \in T$ we have $\frac{h(t)}{r + (1 - r)h(t)} \ge 1$ for all $r \in [0, 1]$. That implies $[1, h(t)] \subseteq h(T)$ for all $t \in T$.

Let $x, u \in S$. Because for any $r \in (0,1)$ we have

$$\left| \frac{rx_{j}}{r + (1 - r)h(t)} + \frac{(1 - r)h(t)u_{j}}{r + (1 - r)h(t)} \right| =$$

$$= \frac{rx_{j}}{r + (1 - r)h(t)} + \frac{(1 - r)h(t)u_{j}}{r + (1 - r)h(t)} \geqslant$$

$$\geqslant (1 - r) \frac{h(t)}{r + (1 - r)h(t)} u_j \geqslant (1 - r)u_j = (1 - r) |u_j|,$$

for each $j \in \{1, ..., n\}$, we get that

$$(1-r) \max \{|u_1|, \ldots, |u_n|\} \leqslant$$

$$\leqslant \max \left\{ \left| \frac{rx_j}{r + (1-r)h(t)} + \frac{(1-r)h(t)u_j}{r + (1-r)h(t)} \right| : j = 1, \ldots, n \right\}.$$

Then

$$(1-r)g(u) = \{y \in R_{+}^{m} : \|y\| \leqslant (1-r) \max \{|u_{j}| : j = 1, \dots, n\}\} \subseteq$$

$$\subseteq \left\{ y \in R_{+}^{m} : \|y\| \leqslant \max \left\{ \left| \frac{rx_{j}}{r + (1-r)h(t)} + \frac{(1-r)h(t)u_{j}}{r + (1-r)h(t)} \right| : j = \overline{1, n} \right\} \right\} =$$

$$= g(rx + (1-r)u).$$

Definition 2. We say that the point $x^0 \in S$ has the (I) property if for each $b \in X$ there exists $r \in R$, r > 0 such that

$$x^0 + sb \in S$$
 for all $s \in [0, r]$.

Let

$$I(S) = \{x^0 \in S : x^0 \text{ has the (I) property}\}.$$

Theorem 2. If the conditions (i)—(iv) are verified, then the following assertions are true:

(a) If $P(f, g, h, S) \neq \Phi$, then $I(S) \subseteq P(f, g, h, S)$.

(b) If $E(f, g, h, S) \cap I(S) \neq \Phi$, then E(f, g, h, S) = S.

Proof. (a) If $I(S) = \Phi$, then $I(S) \subseteq P(f, g, h, S)$. Let now $I(S) \neq \Phi$ and let $y \in I(S)$.

Because $P(f, g, h, S) = \Phi$, there is a $x \in P(f, g, h, S)$. Two cases are possible:

i) y = x; then $y \in P(f, g, h, S)$.

that $y \neq x$. Then for $b = y - x \in X$, there is a $r \in R$, r > 0 such that $y + s(y - x) \in S$ for all $s \in [0, r]$.

Let
$$z = y + \frac{r}{2}$$
 $(y - x)$. Evidently, $z \in S$.

If we take $q = \frac{2}{2+r}$, we have 0 < q < 1 and y = (1-q)x + qz.

Hence $y \in [x, z] \subseteq S$. Because $x \in P(f, g, h, S)$, we have by assertion (a) of Theorem 1, $[x, z] \subseteq P(f, g, h, S)$, i.e. $y \in P(f, g, h, S)$. The assertion (a) is proved.

(b) Assume that $E(f, g, h, S) \neq S$. Then $P(f, g, h, S) \neq \Phi$ and, by assertion (a), we get $I(S) \subseteq P(f, g, h, S)$, which contradicts $E(f, g, h, S) \cap I(S) \neq \Phi$. Therefore E(f, g, h, S) = S.

Remark 2. If (i) is not satisfied, then Theorem 1 can not be true. For this let $X = R^2$, $Y = R^2$, $f: R^2 \to R^2$ defined by

$$\begin{split} f(x_1,\ x_2) &= (-x_1,\ x_1^2 + x_2^2) \ \text{for all} \ (x_1,\ x_2) \in R^2, \\ S &= \{(x_1,\ x_2) \in R^2\,; \ x_1 \geqslant 0, \ x_1 \geqslant x_2, \ x_1 \geqslant -x_2\}, \\ T &= R,\ h: R \to R \ \text{defined} \ \text{by} \ h(t) = 1 \ \text{for all} \ t \in T, \end{split}$$

and

$$g:R^2 o\mathscr{P}(R^2),$$
 defined by $g(x)=R_+^2\diagdown\{0\}$ for each $x\in R^2.$

Obviously the conditions (ii)—(iv) are satisfied, but not (i). We have $E(f,\ h,\ g,\ S)=\{(x_1,\ x_2)\in R^2: x_1\geqslant 0,\ x_2=0\}.$

1) Let $x=(1,1)\in\mathcal{S},\ y=(1,\ -1)\in P(f,\ g,\ h,\ \mathcal{S}).$ If we take (11) z=1/2x+1/2y=(1,0),

then we have $z \in [x, y]$ and $z \in E(f, g, h, S)$. Hence $[x, y] \notin P(f, g, h, S)$. Therefore, the assertion (a) for Theorem 1 is not true.

- 2) Let $x=(1,1)\in S,\ y=(1,-1)\in S.$ The point $z=(1,0)\in E(f,g,h,S).$ Then $]x,\ y[\cap E(f,g,h,S)\neq \Phi.$ But $x\notin E(f,g,h,S).$ Hence $[x,\ y]\notin E(f,g,h,S).$ Therefore the assertion (b) of Theorem 1 is not true.
 - 3) Let $x = (1,1) \in \mathcal{S}, y = (1, -1) \in \mathcal{S}$. The point

$$w = 1/4 \ x + (1 - 1/4)y = (1, -1/2) \in]x, y[\cap P(f, g, h, S)]$$

and the point

$$z = 1/2x + 1/2y = (1,0) \in]x, y[\cap E(f, g, h, S).$$

Hence $]x, y[\notin P(f, g, h, S)]$. Therefore the assertion (c) of Theorem 1 is not true.

4) The point $x = (1, 1) \in P(f, g, h, S)$ and the point

$$z = (1,0) \notin I(S) \cap E(f, g, h, S)$$
. Hence $I(S) \notin P(f, g, h, S)$.

Therefore the assertion (a) of Theorem 2 is not true.

5) The point $x = (1,0) \in E(f, g, h, S) \cap I(S)$, but $E(f, g, h, S) \neq S$, because $y = (1, -1) \in P(f, g, h, S)$. Hence the assertion (b) of Theorem 2 is not true.

Remark 3. If (ii) is not satisfying, then Theorem 1 can not be true. Let $X=R,\ Y=R,\ f:R\to R,\ f(x)=x$ for each $x\in R,\ S=[0,\ 1]\cup [2,\ 3],\ T=R,\ h(t)=1$ for all $t\in T,\ g:X\to \mathscr{P}(Y)$ with g(x)=[0,1] for each $x\in X$.

Because

$$f(x) = \begin{cases} h(1)f(0) + x & \text{if } x \in [0, 1[\\ h(1)f(2) + (x - 2) & \text{if } x \in [2, 3] \end{cases}$$

it follows that P(f, g, h, S) =]0, 1[0]2, 3]. Then $E(f, g, h, S) = \{0,2\}$.

1) The point $x = 0 \in S$ and the point $y = 3 \in P(f, g, h, S)$, but $[0, 3] \notin P(f, g, h, S)$. Hence the assertion (a) of Theorem 1 is not true.

- 2) Let x=0 and y=3. We have $2 \in]0$, $3[\subseteq S \text{ and } 2 \in E(f, g, h, S)]$. Then $]0, 3[\cap E(f, g, h, S) \neq \emptyset$. But $0.5 \in]0, 3[\cap P(f, g, h, S)]$. Hence $[0, 3] \notin E(f, g, h, S)$. Therefore the assertion (b) of Theorem 1 is not true.
- 3) Let x=0 and y=3. Because $0.5\in]0,\ 3]\cap P(f,\ g,\ h,\ S)$ and $2\in]0,\ 3[\cap E(f,\ g,\ h,\ S),$ it results that the assertion (c) of Theorem 1 is not true.

Remark 4. If (iii) is not satisfying, then Theorems 1,2 cannot be true. For this let $X=R, Y=R, S=[3/4,1], T=[-1,1/2], h:T\to R,$ $h(t)=\begin{cases} t, & t\in[0,1/2]\\ 2-t, & t\in[-1,0[\end{cases}, & g:X\to\mathscr{P}(Y) \text{ defined by }g(x)=[0,1/4] \end{cases}$ for each $x\in X$ and let $f:R\to R$, f(x)=x for all $x\in X$. We have $h(T)=[0,0.5]\cup[2,3].$

If we take t = -0.5, we get

$$[1, h(-0.5)] = [1, 2.5] \notin [0, 0.5] \cup [2, 3].$$

Hence $[1, h(t)] \notin h(T)$ for all $t \in T$.

1) Because we have

 $P(f, g, h, S) = \{([0, 0.5] \cup [2, 3]) \cdot x + [0, 0.25] : x \in [0.75, 1]\} = \{0.75\},$ it is easy to see that $1 \in S$, $0.75 \in P(f, g, h, S)$. But $0.875 \in]0.75, 1]$ and $0.875 \notin P(f, g, h, S)$. Therefore the assertion (a) of Theorem 1 is not true.

Remark 5. If (iv) is not satisfying, then Theorem 1 can not be true. Let X=R, Y=R, S=[0,1], $f:R\to R$, f(x)=x for all $x\in R$, $T=[1,+\infty[$, h(t)=1 for each $t\in [1,+\infty[$ and let $g:X\to \mathscr{P}(Y)$ be defined by g(x)=[1,2] for each $x\in X$, Obviously the conditions (i)—(iii) are satisfying. But (iv) is not satisfying because if we take $x=0\in S$, $u=1\in S$ and r=0.5, we have:

$$0.5g(u) = 0.5 \quad [1, \ 2] = [0.5, \ 1],$$

$$g\left(\frac{0.5}{0.5 + 0.5}x + \frac{0.5}{0.5 + 0.5}u\right) = g(0.5) = [1, \ 2]$$

and $0.5g(u) \not\equiv g(0.5)$.

It is easy to see that $1 \in P(f, g, h, S)$ (we have f(1) = 1 = h(1)f(0) + 1 and $1 \in g(0)$). Then $0.5 \in S$, $1 \in P(f, g, h, S)$ but $]0.5, 1] \notin P(f, g, h, S)$. Then, the assertion (a) of Theorem 1 is not true.

REFERENCES

- 1. Duca D. I., Vectorial Programming in Complex Space. Seminar on Optimization Theory (Cluj-Napoca, 1986), 3-82, Preprint, 86-8, Univ., Babes-Bolyai', Cluj-Napoca, 1986.
- 2. Duca D. I., Mathematical Programming in Complex Space (in Romanian) Doctoral Thesis, Univ. din Cluj-Napoca, Cluj-Napoca, 1981.
- 3. Duca D. I., Duca Eugenia and Lupşa Liana, On the structure of the Set of Points Dominated and Nondominated in a Vectorial Optimization Problem. Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1993), 20-26, Preprint, 93-6, ,,Babes-Bolyai' University. Clui-Napoca, 1993.
- 4. Duca Eugenia and Duca D.I., On the Structure of the Sci of Efficient Points in a Vectorial Programming Problem in Complex Space (in Romanian). Lucrările Seminarului itinerant de ecuații funcționale, aproximare și convexitale, (Cluj-Napoca, mai, 1979), 41-47, Preprint, Univ. "Babes-Bolyai". Cluj-Napoca, 1979.
- Lupşa Liana, On the structure of the Set of Efficient Points in a Integer Vectorial Programming Problem (in Romanian), Lucrările Seminarului de ecuații funcționale, aproximare și convexitate (Cluj-Napoca, mai 1980), 61-70, Preprint, Univ. ,, Babeș-Bolyai", Cluj-Napoca, 1980.
- 6. Lupșa Liana, Particular Problems of Linear Programming and Nonlinear Programming (in Romanian). Doctorat thesis, Univ. din Cluj-Napoca, 1981.
- Sawaragi Y., Nakayama H. and Tanino T., Theory of Mulliobjective Optimization, Academic Press, Inc. Orlando, San Diego, New York, London, Toronto, Montreal, Sydney, Tokyo, 1985.
- 8. Zeleny M., Mulliple Criteria Decision Making, McGraw-Hill, New York, 1982.

Received 15.11.1993

University of Cluj-Napoca Department of Mathematics 3400 Cluj-Napoca, Romania