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Let (X, -, - XK) and (Y, 4+, ., &) be real or complex linear spa-
ces, let S be a nonvoid subset of X and let T be g nonvoid subset
of R.

Let f: X - ¥, 9: X - 2(X), h:T - R be given functions.

Definition 1. An element @ of § is said to be nondominated point
of § with respect to f5 g, b iff there does not exist any point ze § such
that

(1) J(@) e M) - f(2) 4 g(2).

In the following, &( Jy g, h, 8) will denote the set of the nondomi-
nated points of § with respect to f, g, h, and

-P(f7 95 h; S) :S\\E(f) 9y h7 S)

will denote the set of the dominated points of § with respect to g, b
We have

P(f, g, b, 8) = {y €8 :there is g e § such that f(y) e MT)- flo) + g(x)}.

Remark 1. a) For ¥ = B™, h: T — R defined by h(t) =1 for each
te I and g:X — 2(Y) defined by g(@) =R\ {0}, for all & e X, the set _
H(f, g, h, S) coincides with the set of Pareto minima,.

by Forh: 7' — R, k(i) =1 for all te 7 and g: X - 2(Y) defined
by g(«) = D for each s e X, where D is g given subset of ¥, the set (f,
g, hy 8) coincides with the set of nondominated points of § with respect
to f (see [3]). .
If @, ye X and 2 + ¥, then we denote by
(2, y]1={0 —t)a + ty : te [0, 17,
[, yl = {(1 — o -4 y:te [0, 1[})
lz, 9] = {1 — ly:te 10, 173,
o, y[ = {1 — Do +ty:te 10, 1}
Theorem 1. If
D) f:X >Y 4s an affine function ;
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(1) 8 is a nonempty conver subsct of X;

(i43) h: T — R, 18 a funclion such that [1, )] < MT) for each
te T;

(iv) for each x, we S we have

7 . (1 — r)h(t) u)

r 4 (1 — r)h(2)

(1 — rjglu) < g(r 1 — )ity

for all €] 0, 1[,

then the following assertions are irue:
(a) If xe S and ye P(f, g, b, 8), then ]z, y] < Pf, ¢, by ).
(b) If @, ye S and lw, yLnBf, g, b, 8) # , then [z, y] = B({

g, b, 8).

"V If @ ye S and Yo, yln PU, g, by 8) # @, then lay yI < P(f,
g, b, ).

ol there are we S, te T' and

: Proof. (a) Because ye€ P(f, g, h, 8),
d e g(u) such that '

(2) fly) = h(t) flu) + d.

Let re 10, 1[. Since S is a convex set and w, ¥y € S, we have
(3) ro + (1 —rjyes.

Because f is an affine function, from (2) we get
(4) fera + (1 — r)y) = rf(e) + Q@ — nfly) =

= rf(x) + (1 — r)(Of(u) + d).
Taking
(5) k= Lo,
(1 = ()

it is easy to see that
(6) 0 <k<1.

Because r - (1 — (1) € [1, ()], from (iii) it follows that there is e T
such that .
(7) ' R(E) =7 -+ (1 — mh(1).
From (5) and (7) we have
R f(kw + (1 — Ew) = [r + (1 — 7)h(?)] -
R ) (1 — k() -
. (7‘ + (1 — k(1) Jo r 4+ (1 — () (u)) B
= rflw) + (1 — ) (R(Of(w) + @) — (1 — )4,

and by (2) it results
MO f(ko + (1 — k) = #f(x) + (3 — mfly) —
— (L —rd=fre + 1 —n)y) — @ —n)d.
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Hence
8 > N o
(8) Jore + (1 — r)y) = W) f(ka + (1 —Eu) 4+ 1 — r)a
From (6), since de g(u) and we have (iv), it follows
9 D)
(9) (L —rdegkes + 1 — k)u).

Now, (8) and (9) imply
fre + U —ryy)e MDYk + 1 — 1
7 — k)u) 4 g(k 1—
But k2 4 1 — k)w e S. Hence o o
(10) re 4 (1 — r)y e P(fa gy hy 8).

il 7 we ha. / i
t:ha"t ]m7 ./ b= 1 (], ./[’ ,;17 S). ( ) a’nd :’/ -P( 9 g? L? S)? AR

(b) 1f xeP(f, 9, h7 ‘S) or ye P(f, 9, h’7 S); by (3:) we get
e, yl = P(f, g, b, 8), which contradicts Je, yLnE(f, g, 0, 8) = @
» .

Agsume now th here i
ver [ at there is we Jo, y[n P(f, g, &, §). Then, by (a),

loy, w] < P(f, g, by, 8) and [w, y[ < P(f, g, & 8)
These inclusions imply ek

J“"7 y[ = ](L‘, wlu [w7 y[gP(f, g, h; S))

whig 3 " i 3 1

) l(,.]](ccol.;ifj&dlcth loy y[ 0 B(f, g, b, 8)#. Hence [g,y] c B(f, g, ,8)
Sudl ‘rh)a- h ;j’glg}ea by cont‘ra}dintion, that there exists a i)tgnt u’*ej ,"'I’* .
HPH('G: j‘l“l ?![ n (E:f(?fg’ J"? }b)‘srg‘henIby (b} we have [m, yJ Cﬁ’()f q ‘}f" g,’!)[
ence |z, gl nP(f, g, h — @, whi b Y1 =8, g, hy S).
Jo, y[ 0B(f, g, h, S) % @. » Which contradicts ~the hypothesis

CororrARY. 1. If (i) —(i . ol
o conver st J () —(v) are satisfied, then the set P(f, g, b, 8) is

that

| lz, y1 = P(f, g, b, 8).
But oie'P(f, 9, by 8). Then [a, y] < P(f, g, &, 8).
Ex; ;7};;, lfe(ﬂllo“lljnf ;Sfe gi[ve three examples which fatisfy (iii) and (iv)
, , - uet L =0, 1], let h: T — i : :
tor all . , 1], : L. be defined = 2
or all e T'and let g: X — 2(¥) be defined b; g(@) :ij;egofya,lilb(fc) e_zlf'
. ?

where 4 is a nonvoid g ;
[0,1]. A < A. subset of ¥ which has the property that

Obviously h([0, 1]) = [0, 1] and for any te [0, 1] we have
[1, ()] = [ht), 17 < [0, 1],
Also, for each g, uwe X, we have

1 —7r)gu) =1 —r4

Proof f y
roof. Let x, ye P( y 9, hy S). Appl ing Theorem 1, (a), we get -
=]
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and

F 4 (1 — k() r o (1 — 7)h(t)
But (1 —r)4 < [0,1]-4 = A. Hence
7 , (1 — »)h(t) u)
x .
7 (1 — r)h(t) ¥4 (L — k()
Boample 2. Let T = R, let h: B — R defined byr ) = 1 for a}l
teT Tet X =R, Y =R, 8§ =R, and let g: B — Z(E) be defined by
g(w) = [0, @] for all we B,

Obviously [1, k()] = {1} = R(R).
Tor each x, ue 8 = R, we have

(1 —rglw) = [0, (1 —nul< [0, 7w+ (L —nu] = glra + (1 — 1)) =
r (1 — r)h(t) )
=g a w) .
(9‘ + (1 — r)h(¥) 4 (1 — )
Ezample 3. Let T = [1, + co[ and let h: T — R defined by h(t)=
— —t+1. Let X =R, Y = R™ let § be a nonvoid convex subset
of R* and let ¢ : R* — 2(R"™) be defined by

g ( I — (L rIME) u—) = A.

1 —rglu)y =g (

g(@) = {ye Ry : |yl € max {|a;]:je{l,.. ,n}.
W)
4 (1 — rh(#)
re [0, 1]. That implies [1, k(#)] = W(T) for all te T.
Tet @, we 8. Because for any re ] 0,1 we have
rE; o N )h(t)u;
r = (1 —#)h(1) v - (1 — r)h(t)
. re; (1 — #)h(t)uy S
r (1 — 1)

T r 4 (1 — P)(e)

)
r+ (L —n)h(t)

Obviously, for each te T we have z 1 for all

2z (L=ir) w; 2 (1 —ru; =1 — ) |,

for each je {1,...,m}, we get that

Y/

(1 —7)ymax {|ug], .- | Us|}

ra; (A — »)h(t)u; I i il ﬂ} -
P4 (L — R 7 (1 — )AL T

£ max {
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Then -

(I —ng(u) ={ye B} : |yl <@ —rmax {jwj:j=1,.. N
i Al < , 71 (@ —n)h(uy | T } o=
‘ﬁem*mhmmﬂr+a~www4r+a—mwﬂ” o

= g(ra - (1 — r)u).
Definition 2. We say that the point 2°¢ S has the (I) property if
for each be X there exists re R, » > 0 such that
2’ -+ sbe § for all se [0, r].
Let

I(8) = {2 S : 2° has the (I) property}.

Theorem 2. If the conditi ons (i) —(iv) are verified, then the following
assertions are true :

(a) If P(f) 9, h'i S) # (Da then I(S) IJ(f; 9, h’ ).

(o) If E(f, g, by 8) n I(8) # ©, then E(f, g, hy 8) =8,

Proof. (a) It I(8) = @, then I(S) < P(f, ¢, h, S). Let now I(S) #
# & and let y e I{S).

Because P(f, g, h, 8) =@, there is a z e P(f, ¢, h, 8). Two cases
are possible : !

1) ¥y = w; then ye P(f, ¢, b, S).

i) ¥ # @ Then for b =y — xe X, there is a re B, >0 such
that y + s(y — «)e S for all se [0, 7]

Let 2=y + é (¥ — «). Evidently, ze S.

2
If we take g = R we have 0<q<l and y=(1 — ¢)z - ¢z
-

Hence ye [x, [ = 8. Because ze P(f, g, b, 8), we have by assertion
(a) of Theovem 1, [, 2[ < P(f, g, h, S), i.ec. ye P(f, ¢, h, S). The .
assertion (a) is proved. i

(b) Assume that E(f, ¢, k, S) # S. Then P(fy g, by 8) # © and,
by assertion (a), we get I(S)< P(f, g, hy, §), which contradicts E(f, g,
ky, S)ynI(8) # ®. Therefore E(f, g, h, S) = 8.

Remark 2. Tf (1) is not satisfied, then Theorem 1 can not be true.
For this let X — R ¥ = R2 f: R?* > R? defined by

flwy, @) = (—wy, 24 a3) for all (@1, @,) € R2,
S = {(x, x;) € R?; 120, o =y a2 — &y},
T =R, h:R - R defined by h(t) =1 for all {e T
and
g: RB* — P(R?), defined by ¢(a) = TEN{0} for each we R2
Obviously the conditions (ii)—(iv) are satisfied, but not (i). We
have B(f, h, ¢, 8) = {(z;, @) e R?:m; =0, Xy =0},
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1) Let 2 =(L,)eds, y=(1, —1)e P(f, g, h, 8). Tt we take
(1) 2 =1/2z + 1/2y — (1,0),

then wehaveze |z, ] andz e L(f, g, h, S). Hence |z, y]¢ P(f, g, h, 8.
Therefore, the assertion (a) for Theorem 1 ig not true. :

2) Let 2 =(1,1)e S, y =1, —1)e 8. The point = = (1, 0) e H(f,
g9, hy S). Then J@, y[ 0 B(f, g, h, S) # O. But xEI(f, g, I, S). Hence
L@, y]EL(f, g, h, 8). Therefore the agsertion (b) of Theorem 1. is not
true.

3) Let w =(1,1)e 8, y =1, —1)e 8. The point

w=1/4 24+ (1 -1y = (1, —1/2)e lay w0 P, g, b, S)
and the point
=102z +1/2y = (1,0) e Jz, y[n Lf, g, b, S).

Hence Jz, y[ ¢ P(f, g, b, S). Therefore the assertion (¢) of Theorem 1 is
not true. » ,
4) The point @ = (1, 1)e P(/, g, b, 8) and the point

2= (L,0) ¢ L(S) n E(], g, h, 8). Hence I(S) & P(f, g, b, S).

Therefore the assertion (a) of Theorem 2 is not true. )

5) The point @ = (1,0) e B(f, ¢, h, §) nI(8), but IL(f, ¢, h, )
# 8, because y = (1, —1)e P(f, ¢, h, 8). Hence the assertion (b) of
Theorem 2 is not true.

Remark 3. If (ii) is not satisfying, then Theorem 1 can not be true.
Let X =R, Y =R, f[: R - R, flz) = a for each we R, § = [0, 1[ U
[2, 3], T =R, h(1) =1 for all {e Ty g: X - 2(Y) with g(e) = 10,1]
for each we X.

Because
flay = [MON0) + 2 i wefo, 1]
o {h(l)f(-?) + (. —2) it we[2 3]

it follows that P(f, ¢, h, S) = 10, 1[u ] 2, 31 Then K(f, g, h, 8) =
= {0,2}. : _

71§ The point @ =0e S and the poirit ¥y = 3 € P(f, 4, Iy 8), bub
10, 31 P(f, g, h, 8). Hence the assertion (a) of Theorem 1 is not true,

2) Let w =0andy = 3. Wehave2e |0, d[eSand2e H(f, g, h,S).
Then 10, 8[ nH(f, g, h, 8) # ®. Bul 0.5¢ 10, 3[n P(f, g, b, S). !_—Ience
[0, BI£L(f, g, b, S). Therefore the assertion (b) of Theorem 1 is not
true. : ;

3) Let @ =0 and y = 3. Beecause 0.5 ¢ 10, 31n P(f, g, by 8) and
20, 3[nI(f, g, hy 8), it vesults that the assertion (c) of Theorem 1
is not true.

Remark 4. 1F (iii) is notl satistying, then Theorems 1,2 Qam}ot b)e
true. For thislet X = B, ¥ = R, 8 = [3/4,1], T = [—1, 1/2], h: I-R,

o = I'J' B ¥
wy = & TSR] o v L a(¥) actined by glo) = 0, 1/4]

2 —i, te[—1,0] ° e Ly
for each we X and let f: B — R, f(x) = o for allo e X, We have h(T) —
= [0, 0.5]U ]2, 3]. :
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If we take 7 = — 0.5, we get

[L, M(—0.3)] = [1, 2.5] & [0, 0.5]u 12, 3].

Hence [1, i(t)] ¢ W2 for all te 7.
1) Because we have

2(f, g9, by 8) = {(10, 0.570712,3)) - « + 10, 0.25]: e [0.753, 1} =1{0.75},
ifis easy to see that 1e 8, 0.75 e P(f, g, 1, 8). But 0.875 €]0.75, 1] and
0.875 ¢ P(f, ¢, h, 8). Therefore the assertion (2) of Theorem 1 is not true.

Remark 9. If (iv) is not satisfying, then Theorem 1 can not be true.
Let XY =R, Y =R, §= [0, 1), [: R = R, fla) =a for all xe B,
T = [1, +ocof, h(t) =1 for each te [1, 4ol and let g: X — 2(Y) bhe
defined by g(a) = [1, 2] for each xe X, Obviously the conditions (i) —
(iif) arve satisfying. But (iv) is not satisfying because if we take 2 — 0 e S,
u=1€e8 and r =0.5, we have:

0.5g(u) = 0.5 [1, 2] = [0.5, 1],

=

).5 D
_ 0y + —
(0.5 405 0.5 - 0.5

and 0.5g(u) & ¢(0.5). ‘

It is easy to see that LeP(f, g, h, S) (we have Sy =1 =
R(L)f(0) 4+ 1 and 1 € ¢(0)). Then 0.5 e S, 1e P(f, ¢, b, S) but 16.5, 11 ¢
EP(f, g, h, S). Then, the assertion (a) of Theorem 1 is not frue.

w) =¢(0.5) = [1, 2]
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