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1. INTRODUCTION

Let I = [a, b], @ < b, be an interval on the real axis. Consider
the equation :

(1.1) Hz) =0,
with f: 7 - R.
In paper [1],to solve equation (L.1), the author has considered the

sequences (a,) and (g(@,)), n = 0, 1,.. ., generated by means of Stetfen-
sen’s method for the case when f is of the form :

(1.2) f(@) = © — g(a),

where g:I — [R, and he has studied the conditions under which the two
above sequences are monotonous (one increasing, the other decreasing),
both converging to the soution & of equation (1.1). ;

In paper [2] the Same problem has been studied, considering
Steffensen’s method for a more general case, that is, when f and ¢ do
not satisfy equality (1.2), but it is supposed that equation (1.1) is equi-
valent to the equation :

(1.3) & —g(x) =0

Paper [2] points out the advantages of Steffenser’s method in the men-

tioned case (f and g fulfill the above condition, hence (1.2) does not hold).
“As known, Steffengen’s method, studied in [1] and [2]), congist:in

generating the sequences (a,) and (g(awn))y » = 0,1,..., through : =

~ f(@a)
["I"Hv f/( wn) 7f]

where [wy, g(2a); f] stands for the first order divided differences of f on
the points @, and g (a.), [3]. :
In the present note we shall study the problem of [1] and [2] for

the Aitken-Steffensen method. For this purpose, cousider the following

(1.4) Tugqp = Tn — y @y el
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thres .equations :
flz) =0;
(1.5) % — g(x) = 0;

% — giz) =0,

where ¢,, g,: I — [R.

Assuming that equations (1.5) are equi valent, in order to approxi-
mate the root # of equation (1.1) we shall consider the requences (x,),
(g, (24)), and (go{ (@), n = 0,1,..., generated by the Aitken-Steftensen
method, namely .

.f(.(/](‘)731)) 30 EI

(1.6) Znyy = Gy 0a) — X
[9:(@a)s galga(@a)) 5 11,

o It ig well known that the. convergence order of Steff ensen’s method
for sequence (1.4) is 2 if the functions J and g verify equality (1.2).

In the case of the more general method studied in [2], the conver-
gence ovder is p -+ 1 if the sequence (#ady m =0, 1,..., senerated hy
Yorr = ¢(¥.), ¥, € I, has the convergence order p(p €R), p > 1).

The convergence order of the method (1.6) is p(q - 1) if the sequen-
ces (¥a) and (z,), » =0, 1,.. ., generated by yuyy = ¢(#a), 2uyy = go(yn)
Yo% € I, have the convergence ordery p and g, respectively,

From this viewpoint the results of [2] and those of this paper can
present certain advantages; more concretely, given the function f, the
functions ¢ and J1s ¢oy Yespectively, may be chosen in infinitely variouns
ways. These will be classified at the end of this note.

We shall adopt the notat‘io.n [.fv,]/. ;_f] and [;1;? 2 ;:f], with a9z €1,
for the first and second order divided differences of the function J, respee-
tively. We shall also use in proofs the following obvious identities :

fg)
1.7 () — ‘ :
- O oo, oo T
Hgolg(@))
[0 glg) 7T ey
A8 JE) =H2) + [0, 1311 (e = @) + [2, 2, 1341 (2 — 2) (2 — y)

where 2, y,z e I. As to the notions of monotonicity and convexity of the
function fon the interval 7 y we shall adopt the following definitions :

b

= 0 2)) —

/

DEFINITION 1.1, The function fI—-Ris thereasing ( nondecreasing,
decreasing, nonincreasing) on I if for every xyy eI the relation [z9;/]1> 0
(=0, <0, <0, respectively) holds.

DEFINITION 1.2, The function J I >R is conven (nonconcave, concave,
nonconvew) on I if for every a,y, z T the relation [2,9,2;01>0 (> 0, < &,
<0, respectively) holds.

—
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2 MONOTONIGITY OF THI SEQUENCES GENERATED BY THE AITKER-STETTENSEN
MIT10D

In the sequel we shall suppose that the functions f, ¢, g, fulfill
the following counditions :

(a) the functions f, i §2 are continuous;

(b) the function ¢, is mnereasing on I ;

(¢) the equation @ — (@) = 0 has only one root T c I ;

(d) the function g, is decreasing on I ;

() the eguations (1.5) are equivalent on I,

As to the problem stated in Section 1, some theorcms are verified,
as Tollows :

THROREM 2.1. If the Junctions f, ¢, g, Julfil the conditions (a) — {¢)
asd, in addition,

(i). fis vrereasing and convex on 1 v 2
(iiy). theve exists ay € I for which fwg) <0, 2y — g,(wy) < 0 and ga{ g (@)Yl
then the sequences (1), (gu(@n)) and (go(g,(2,))), n — 0,1, .., have the pro-
perties:

(1) the sequences (x,) and (gi(@)) ave mnereasing and convergenis

(Ji0)- the sequence (g4(g,( xa))) s deereasing and convergent;

(03)- lim @, =1lim g(@,) = lim 9o (@n)) = &, where & 43 the rooi of
equation (1.1).

Lroof. Since equations (1.5) are equivalent, and & is the unigue
reot for the equation o — gi(@) = 0, it results that 7 is the common unique
rool of equations (1.5).

Since fis increasing and f( %) << 0, it follows that a, < #. Observe
now that from the fact that ¥ is the unique root of @& — g(a) = 0, 01
i increasing, and @, — gi(%y) < 0, it vesults that z — $i(x) < 0 for every
@ <T. As m, <&, il results Lhat (%) <gy(F)=2a, that is, g(w,) <&. The
function g, is decreasing, henee gl 43(29)) = go( ) =&, namely Go(§1( ) > &.
Bince g (x,) < &, it follows that J(gi(2y)) < 0 ineq uality which, together
with [g,(@), golm(a) /] > 0, and taking into account (1.6) for = 0,
leads to the inequality 2, > gi(@y). From identity (1.7) for = — &, and
from the fact that J(gs(g(#e))) > 0 it resulls that Golgy(y)) > @, thervelore
a el '

Substituting z = Py @ = gy(2), ¥ = go(gi(x,)) in (1.8), and taking
into account (1.6) for # = 0, we get the identity :

Jay) = [y, gy( o)y 9ol g2(20)) 5 f1 (2, — 9(29))) (a,
m——
With this, and taking into accont the convexity of f and the above
proved results, we obtain f(x,) < 0, from which it regults @y << #, hence
@ — gy(a,) < 0. v
In this way the following relations were proved :

— G ga(7)))-

Ty < gilwy) <oy < T < 92(g.( ).

7 — c. 1080
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Since z, < x; and g, is increasing, it follows that 01(2g) < gy( ), from which
there results g,(g,( T9)) > gao(gy( ), because we assumed that ¢, is decrea~
sing. ;

~ Let new @, €I be an arbitrary element of the sequence generated by
(1.6) for which f(#,) < 0 and g g(20)) € I From m, < & it results that
En — ¢i(mn) << 0. Repeating (for #a) the above procedure (corresponding
to zy), we obtain :

To < gl@s) < 2y <& < o gi(xa)) ;
(2-1) Gil@a) < 01('1“'::+1) 5

gl ga(wu)) > 991 @),
relations which prove the monotonicity of the two sequences. These rela-

tions also prove that both sequences are bounded. _

Now, we show that these sequences have a common limit, I, where
I=lm gz,

Write 1, = lim $ixa)y Ly =1im g,(g,( &), and suppose that I # 1,

From the continuousness of ¢, and g¢,, and from the definition of I,
we deduce : :

(2.2) b= gl);

ly, = go(ly).

But, by virtue of (2.1), 1, <1 <1, hence 9ll) < g(l) < gy(1,) and 92(8) >
2 0o(l) = g4(1,), and, taking inte account (2.2), it results a(l) <1,
namely I, — ¢,(1,) > 0, therefore I, > #. Tn other worsd, the following
inequalities hold :

Tl <1 <,

trom which, taking into account the monotonicity of 1y, We get :

=1

= () < n(l) < n(l) < (s,
hence < g(l) <.

But, since 1, > 7, g1 1% inereasing and Jo 18 decreasing, there resulis
i(l) = gy(1), from which we {_lr-_'cl__llc.e nll) = 1, which, together with
L = g(l), leads to L 2 1, and thiy one, together with |, <1, implies
ly = Iy, which contradicts the hypothesis 7, 5 Ly
Therefore 1, = I, because L <1 <1, we have L =10,=1
Passing at limit in (1.6), and considering the continuousness of the
functions f, ¢,, g, it results that I =& is the root for equation (1.1).
With this, Theorem 2.1 iy completely proved.
The following theorems can be proved in a similar manner :
' THEORJ.QJ}I 2.2. If the functions Iy 915 @a fUlfil the conditions (a) — (e)
and, in addition :
(15) [ is increasing and concave on I;
(ii,) there exists %o € I for whieh f{ To) >0, ry — gileg) > 0 and Golgn(xy))e I,
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then the sequences (2a)y (gy(@n)), (920g:(@a))), n — 0, 1,..., have the pro-
perties:
(Jz) the sequences (z,) and (g Z4)) are decreasing and convergent ;
(1i2) the sequence ( Gog(xn))) 4s tnereasing and convergent ;
(3jJ2) im @, = lim 91 (@) = lim  gy(gy(2,)) = &, where T is the root of
equation (1,1).

THROREM 2.3, If the functions 5 91y 4o Julfil the conditions (a)— (e)
and, in addition,
(iy) [ is decreasi ng and conver on I ;
(iiz) there ewisis @y €1 for which f(a,) < 0, 2y — gi(@y) > 0 and Dol g(2y))e 1,
then the sequences ( )y (gy(@a)), g\ g{@n)))y n = 0,1,. . ., have the properties :
(Ja) the sequences (2n) and (g,(x)) are decreasing and convergent ;
(1js) the sequence | Gl gh(20))) s thereasing and convergent ;
(1iJa) lim a2, — lim gi(a,) = lim (g, 0a)) = @, where F s the root of
equation (1.1).

THEOREM 2.4. ] | the functions f, G5 G2 fulfil the conditions (a) — (e)

and, 1n addition,

(i) f is decreasing and concave »

(iiy) there caists g € I for which f(x,) > 0, 2y — gi(z,) < 0 and 9a(g1(x,)) € 1,
then the sequences (@), (g,(:c0)), (gl (@), n = 0, 1,.. ., have the properties:
(1a) the sequences (@) and (g(z.)) are vicreasing and convergent ;

(J1a) the sequence (9ol g @a))) s decreasing and convergent ;

(Jjja) im 2, = lim ¢i(2n) = lim 9o(9u(2)) = &, where & s the root of
Cquation (1.1).

Bemark 2.1, 1f the function fila, b] = R is continuous and two
times differentiable on I = [a, b], a < by, and if fi(x) £ 0, f"{x) £ 0 for
every x eI, then, according to the monotonicity and convexity of f, the
simple procedures for constructing ¢, and g, are obtained as follows -

It fiy increasing and tonvex, and equation (1.1) has a root ¥ el,
then we may consider nlr) = o — J(®)[f(B), ga) = 5 — fla)[f'(a). In
this case f, g, ¢, Fulfil the conditions (a) — (e) and, if ¥y € Iis a point for
which f(a,) < 0, (hen o — Gil@) = [l [f'(b) < 0;if, in addition, Gol ()
€ I and the equation fa) = 0 has the root # on [a, &), then the hypotheses
of Theorem 2.1 are verified, therefore the Corresponding sequences satisty
the conclusions of this theorem,

The same conclusions ag above are also true if ¢ and g, are pro-
vided by the relations 0(x) = & — 1 f(a) and 92 %) = w — 2, flw), respec-
tively, where 2, 1, €ERy and & > f'(b), 0 < Xy < fa).

Analogous constructions con be given using Theorems 2.2, 2.3,
and 2.4, €.

3. NUMERICAL EXAM PLE

Consider the equation
J2) =2 — 2 arctan z — ¢

for z € [3/2, 3]. According to the above remark, we construct the fuctions
Y1 9o Tor f, obtaining
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g.(@) = (10 arctan @ — @)/4,
¢s{®) = (26 arctan & — 8)/5.

Tt is easy to see that, putting , = 3/2, the functions f, ¢, and g, fulfill
the conditions of Theorem 2.1 on the interval I = [3/2, 3].

The sequence generated by relations (1.6) for this case can be
stopped at the step » = 3, because of the fact that @, = g,(@;) = g2(g(%3)),
as results from the table below :

n Ty glwn) 72, (n)) flxn)

0. 1. 500000000000000 - 2.081084308118323 2. 508547854696064 —4.65=—0001
1 2.323572652303234 2.330068291038034 2 .331956675671997 —5.19E—-0003
2 2.331122226685893  2.331122350500425 2 .3531122386182527 —9.901%—0008
3 9.331122370414423 2.331122370414423 2 .331122370414423 —3.53E—0017

REFERENCES

1. Balazs, M., A Bildleral Approximaling Melhod for Finding the Real Rools of Real Iqualions.,
Revue d'analyse numérique el de théorie de l'approximalion. a1, 2 (1992) pp. 11117
9. Pivialoiu, 1., On the Monotonicily of the Sequences of Approximations Oblained by Steffensen’s
- Method., Mathematica, 33, (58), 1 (1993).pp. 71—76. .
3. Piviloiu, 1., Solving Egqualions by Inlerpolation. Ld. DACIA (1981) (in Romanian).

Received 8 X111993 Institutul de Calcul
Sir. Republicii, Nr. 87
PO Box 68
3400 Cluj-Napoca
Romania



