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1. INTRODUCTION

The piecewise interpolants, especi ally those based on Herinite spli-
nes, are simple, effective interpolants of discrete data. They are easy to
compute once values.of derivatives arce determined and have excellent
convergence properties-as the mesh spacing decreases. Methods of explicit
interpolation when values of derivafives are defined locally are of spe-
cial interest among them. The localness of these interpolants is important
when storage requirements are critical, gueh ag for very large data sets,
multidimensional, interpolation or parallel computers with local memory.

There is a great number of papers concerned with the problems of
Hermite interpolation (see, for instance, [3], [# ] — [13]). Nevertheless it
seemns that the problem of construction of new Hermite interpolants is
the actual one (see, for example, [11], [12], [13]). In the present paper
we diseuss & new family of Hermite inferpolants wich one free generating
function. Based on these splines an explicit method of C° interpolation
of gi ven data is presented.

2. THE PRODLEM OF (2 HERMITE INTERPOLATION

We begin our paper with the following problem of O* Hermite
interpolation. Assume that the mesh A:a =z, <@y < ... < @ = b,
is given on the interval [a, b] and [V = 9 (a), © = 0, (1), n, k=0, 1,2,
are known at the knots of the mesh. One has to constiuet an interpolant
H such that interpolation conditions f¢ = H®(a), i = 0, (1), n, k = 0, 1,2,
holds, M € ¢2[a, b] and the analytical representation of H on the interval
[%:, %iy,] depends only on the data given on this interval.

Tt 3s well known (see, for instance, [1], [4], [15]) that the solution of
this problem is given by quintic Hermite splines, which are sixth-order
aceurate. In [8] cubic splines with two additional knots were proposed
to solve this problem. These splines are the fourth-order accurate ones.
Tn the present paper the family of 0* Hermite splines with one free gene-
rating fanction is proposed. Splines from this family are the intermediate
ones between quintic Hermite splines and cubic splines with two addi-
tional knots and they are the fifth-order accurate ones. It is guite
natural that quartics Hermite splines are from this family too.
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Let us introduce splines as follows : on [@s, @y ]

Hoo(@) = fll — o) + fioy o(1) + by Jitt — 203 - 20 — w())/2 +

() M2 — 08 — o())[2 + B30 — 818 - 662 — o(1))/12 -

44

T RSB — 418 - w(t)) 12,

where t = (x — @) [he, hi = @, — 4. G — i

o e N W) R = G — @y 4 =0, (1), # — 1. The first low
1.1]1(.1‘_:3.& 1111:11(:_.-¢Lte_sa that the spline (1) is genera;ted i)y the function v and
t 1@ second indicates the class of continuiby of the spline. Such a notation
Iy convenient in the present paper.

The function » will be called generati i ] i
~ Lune » Called generating function for the spline (1).
This function is to satisfy the following conditions ! W

() o) = 150(0) = '(1) = 0 (0) = v(0) = v (1) = 0;9 &C*[0,1].

The set of functions which hold condition

: 8 (2) is donot 2 hi
set will be called the set of generating - oted by "_““d bhiy

functions in the sequel.

From (1) the following formulae for & rivatives of the spline
are derived g ae tor the derivatives of the spline

(3) Hoglw) = 3PVL) + [U485 — 612 2 — v'())[2 + 7o (642 — 4s® —
— )2 hfi(12 83 — 2402 - 120 — v'(8)/12 Rifie (1268 — 1202 1
+ v'(1)/12,
Hool@) = v (/b 4 fil12 8 — 124 — o7 () [2hy) +
(4) + fi(128 — 1212 — o (IN2h:) + 136 12 4- 48 ¢ -+
12 —0"())/12 4 f77, (3612 — 244 + v (e)) /12, _
H@w>:swwwmw-+ﬂw4t—12—wwmwﬁwi+f ,
)t fiai(12 = 248 — o) (20) + f(726 — 48 — wO(i)) /(12 h) &
F fiead T2 — 24 4 000(8))/(12 1),
Hilia) = 39600 + f124 — v®(1))/(2h) —
(6) — S 24 4 oD 20) + (72 — v@%t»ktlzhii-F
F A2 s R

!

wherce the notation 8@ —= ( Jier — f)[he is used.
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From (1), (3) and (4), taking into account (2), the continuity of the
spline.and.its derivatives of the first and {he second order follows imme-
diately.

Some examples of generating functions for the spline (1) are pre-
sented: below. So, it is easy to prove that conditions (2) are held by the
funetion

(1) w(1) = 1310 — 15t - 612),

which generates well-known quintic Hermite spline. The following func-
tion
(8) o) — 43/t — (1 + 27) 82, ¢ € (0, 7),

1 —40 =%/ — <)+ B —27) @ — (1 — 7)?% te[r,1)
where 7 €(0, 1), generates guartic Hermite splines. In this case = vepre-
sents an additional knot taken on (&, x,,). The fourth derivative of fune-

tion (8) has a discontinuity at the point r. Some more examples of gene-
rating functions are presented now. So, functions

(9) oty w) = 316 — 151 4 62)[(1 4 wl’ (L — 8)), 7 > 3,4 > — o2
(10) o) = 12 — 30t + 2142 — 1483 - 12¢/(2 — 1) — 12(1 — 1)/ 1-L10)

belong to- the set of generating functions £ too. In the example (9),
represents a free parameter of the spline. It §hould Le mentioned
that if the function ¢ is from the set of generating functions then every
function of the form

(11) ut) = o) v(1),
where the function v holds following conditions
(1) =1, v'(1) = v"(1) = 0, v e 02[0, 1],

is from this set too. The next functions may be given as examples of
fnctions v

(12) - vt 4) = 11 4 w2 —0)7), v > 3, u > — 27,

(13) '\I'(iv “) = €Xp (_7“!7-(1 . t)r)’ o2 37

where w is a free parameter. Let us assume now that v, and v, are gene-
rating functions, which hold eonditions (2). Then the functions

(14) o) == (vt) + vy(1))/2,

(15) ot) = (1 4 0y(t) — o1 — 1))J2

are from & too. Thus, using transformations (11), (14) and (15) we get
new generating functions.
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Sm‘e,l one of thg most important question is connected with the
problem of interpolation’s accuracy. Let W&[a, b] be the real Sobolev
space

Wela, b] = {f € C"'[a, b]: f™ D abs. cont.; f™ e L([a, b])}

with the norm ||f|l, = ess sup ([f(#)]) (see, e.g., [10]).
YEla, b] :

The following representation of the spline (1)

(16) H,o(®) = Hy(w) 4 Wflay @, @y Brgqy Fipry Pre] X

X (0(f) — 1310 — 158 + 612))/6

will be useful for error analysis. The following notation are used in (16) :
Hy(z) denotes the quintic Hermite spline and f[w:, @i, @i, iy, @iy Tipq]
denotes, as usual, finite difference with multiple knots of the funt;lb’ion*-}‘.
Assume that f e Wi [a, b] now. Congider the remainder. term

L(2) = Hyo(x) — f(z) = Hy(w) — f(®) 4 B3f[ws, @iy i, Tipyy Ligyy Brgg) X
X (v(t) — t3(10—15t + 61%))/6.

Taking into account that flwi, @ i, @y, @y @] = fO(E)/5!, where
tElet[m,», @i1] (see, e.g., [2]), from the last relation it follows immediately
ha

[2(®)] < Hs(w) — f(@)] + ki X max (|v(l) — 310 —151 + 612)|) X

X max (|J®(E)])/720

gelvy 5441

on (@, @) or

(17) Moy — flle <IHs — flie -+ B X K (v) X {|f]l] 720,
where & = max (h,), I{,(v) = max (|o(2) — t3(10—15¢ -+ 6£2)]).
1 t h

In an analogous way the corresponding estimatoes fo r derivatives can be
- - m s e . ‘ . .

obbzpned. Taking into account estimates for quintic H ermite splines (see,

for instance, [14]) we can summatize from the abov e.

Tuworunm 1. If fe Wila, b] and v e C0, 1], then for the 3
7 , Wola, , ) 0, | / e spline
(1) generated by the function v the following esti;)z(zt(;s / :

WHSS — f® e = 0(R*~5), k = 0, (1), 4,
are valid.
It should he mentioned that from (17) it follows that the spline (1)
is the aecurate one for polynomiales of the degree four. Suppose f be a
polynomial of the degree four. Then || f®|,—= 0 and from (17) it follows
[Hys—f llo < 0, therefore M, 4(x) — (). ’
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3. ALTERNATIVE 10 CUBIC HERMITE SPLINE

Tet us suppose now that f/* are unavailable. In this case we have
dealt with the problem of interpolation of given data f¢® = f® (),
i=0, (1), n; k=0, 1, at the knots of the mesh A. In the case when
only the (! continuity of the interpolant is required the solution of the
problem can be obtained using cubic Hermite splines (see, e.g., [1];, [4],
[15]) or any splines from the families proposed in [12]—[13]. It is well
known that Hermite cubic splines are fourth-order accurate. This type
of splines can not be used in the cases when continuity of higher deriva-
tives i required. So, if the €2 continuity of interpolant is required we
can use guintic Hermite splines for construcling the interpolant. In
this case f{’ may be approximated using finite difference formulae, the-
refore the interpolant is explicit one.

In the case when O3 continuily is required using quintic splines we
have a nonlocal procedure of defining f/’. In what follows an explict
interpolant based on splines (1) from the €2 class of continuity is cons-
tructed.

Let us denote SHy (@) = M¥, i =0, (1), n. Then the spline (1)
can be written in the following way : on [@y @i ]

(18) SHoya(w) = fll — v(t)) + fupao(d) + i@t — 20° 4 20 —

—0(1)))2 - hefiay (283 — 1 — w(1))/2 4 WIMF3E — 883 + 612 —

— ()12 + REMFE (31 — 483 - o(2))/12.
or, formally
(19)  SHg(@) = Hyp(a) -+ BT — f) (Bt — 8% 4 662 — ()12 +

S R(ME, i) (3tf — 4B 4 o)) /12,

The values of M¥, ¢ = 0, (1), %, represent the unknown coefficients of
the splines which are to be determined. Let us require the continuity of
the third derivative of the spline at the knots of the mesh. As a result
we get the gystem of linear algebraic equations

M(24 — v AE, + [2(48 + vO(1)) 4 pl48 + 2@(0))] M¥

(20) (24 — aWONME, =dy i =1, (1), n — 1. .
¢ ?

i

where
de = 128 — (fi + fis1)/2) v®(0) /Ry —

OB — (fio A D20 (1)) —
— T2 pil ft— e — T2l iy — f iy

8(1;]) = (jf-l-l "—fj)/h]', N o= hi/(h'i.—l —{'* h{), Wi = 1 - A
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The system (20) is an undetermined one. Additional equations can bhe
obtained using end conditions. We do not present here the correspon-
ding equations derived from different end condi tions from reasons of
compactness of the paper. Above it was mentioned that we are interested
in an explicit scheme of interpolation. Such s scheme can be obtained
it M¥ are defined explicitly. This is Possible in the case when system (20)
is a diagonal one. As it follows from (20) the system will be the di agonal
one in the case when the generating function o satisfies the following
additional eonditions

(21) v9(0) = ¢®(1) = 24.

As a result we get
MF = 40Ol — WD fhsy) ++ ALy + 310 ey —
(22) = wBfi + fladfhy, =1, (1), n —1.

So » — 1 unknown eoefficients of the spline (18) are determined. Values
of M¥ and M¥ remain unknown. There arve two possibilities in this cage :
either to construct the interpolant on [, u—y] only, o1 to determine
MF and M¥ in an appropriate way. Unfortunately, functions (7) and (8)
do not satisfy conditions (21), therefore the procedure of construction
quintics and quarties is a nonlocal one.

What can be said about interpolation accuracy ¢ Using the repre-
sentation (19) of the spline we have

(28) 18Hus — fllo < IHup — fllo -+ B2 X K,(v) X max My — 11,
| M¥E, — fil )12,
where K,(v) = max, (|31 — 813 |- 612 — v(t)] + 1382 — 4¢3 = (1) ).
Ag it follows from (23) in order to maintain the fifth order of accuracy

of the spline (18) M#* must approximate f/’ with third order of accuracy.
Let us consider

| ME —fi7] = e8Pk — N8O h ) 4wl fi-, + [k —
— w3+ fin) e — fU).
Substituting the Taylor series expansions for T8, &, k=0, 1, with

remainder term in the integral form at the point #, in the last relation
after necessary transformations we get

(24) ‘ [ — 1] < R3O /120,

Taking into account (24) the final estimate follows from (23). Thus the
following theorem was proved above
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TurorEM 2. If fe Wila, b] and the generating function v satisfies
condetions (2) and (21), then for the spline (18) the estimate

H SH'M —f“oo e 0(755)

is valid on [w,, @._,).

Analogous resuts for derivatives can be obtained.

Now examples of generating funetions which sabisfy conditions (2)
and (21) are given. So, it is easy to prove that the functions

(25) v(l) = 13(4 + 151 — 4812 - 42¢% — 19¢0),
(26) o(l) = — 48 + 1200 — 8442 -+ 1064% — 755 + 3005 —
— 481/(2 — 1) 4+ 48(1 — /(L + 1),

©7) o) — {4t3+ 648 — 1265, te[0,1/2] -
=4 -0 — 6 — )t 1201 — 0, teq1/2, 1]

hold required conditions. Using the functions
Yty w) =1/ + ut" (L — )", r >4, 4> — 2%,
vty w) =exp (—wt'(1 — 1), r > 4.

we can construct new generating functions by meaning of the transtor-
mation (11).

Some numerical examples which illustrate the algorithm presented
above are given below. The test functions were taken from [15], namely,
J(2) = exp (@), f(2) = exp(— 10z), fal@)=sin(ra) and f,(x)=1/(11+100
(# — 0.5)%). In tables 2—6 are given errors of approximation of these
functions and their dervivatives by the spline (1) generated by function
(13) on the interval [0, 1], when initial data are given on the uniform
mesh with step . on the interval [— &, 1 o h]. Here the following
notation

By = max |[O(z) — 8W(@)|, » = 0, (1), 4,

igca’
where A’ is uniform mesh on [0, 1] with step h/10, are uged.

Table 1

E, B
1

I ! fa ' [4

no[—— !

h

0.1 9.2E—10 5.1541E—5 1.003E—-7 1.4E--2
0.01 | 8.48E—15 |[3.382KE—10 | 9.5K—13 41.91E-8
0.0053| 1.635E—16 | 1.0134E— 11| 2.96[5-- 14 1.14E—9
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Table 2
I,
I
Aol ko aden | i
0.1 6.702E—8 2.041215—3 | 8.23415—6 5.011E—1
0.01 | 7.0441.—12| 2. 476 —7| 7.972E—10| 3.03E —5
0.005| 4.414E—13| 1.586E —8| 4.98E —11| 1.712EE—6
Table 3
I,
I - =
A fi
0.1 5.951% —6 | 2.87912—1 | 6.321E—4 | 5
0.01 | 5.36E —9 1.931 —4 6.04415—7 2.3115—-2
0.005| 6.7021:—10| 2.443E—-5 7.66E —8 2.6 —3
Table 4
I
I > 2
fy favsdiifi I3 fa
0.1 1.36E—-3 5.366E4-1 1.52E—1 3.37541E4-3
0.01 | 1.36E—5 5.004E—1 1.531<—-3 4.79E4-1
0.005 3.4E —6 1.25115—1 3.83E—4 1.2361E+1
Table 5
E 7
h n 3
h [ 2 | B | f4
0.1 2.6215-1 6.55931K--3| 3.06LE-+1 5.47215+5
0.01 ) 2.711<—2 9.634115+2| 3.0602 1.0237315+5
0.005| 1.36Ji—2 4.91E--2 1.5301 5.05361:4-4

In order to compare results obtained by different splines in table 6
numerical results for the test function f, are given, when the interpolants
are constructed on [0, 1] on the uniform mesh with step h = 0.1. The
first row of the table corresponds to cubic Hermite spline H,.

Table 6
Spline I, I, kK, I, I,
H, 1.618 —3 5.118 —2 5.7 380 —
(7) 1.99E—5 G.518 —4 4.241E —2 6.758 694 .53
_(8) 2.1FE —5b 3.32E—3 1.081E—-1 15.8423 2137.3
27) | 4.2dE-—-5 3.9 —3 2,915 —1 52.8 5358.4
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4. AN EXPLICIT METHOD OF ¢ INTERPOLATION

Let us assume now that only the values fi= f(a), i =0, (1), =,
are available. We consider the problem of constructing an interpolant S
such that S(a) = fi, i = 0, (1), n, and S € C?[a, b). In [6] it is mentioned
that any algoritlon defining fi and [’ which makes quintic spline to be
from {he class (3 is the nonlocal one. In [14] an explicit algori thm of ¢?
interpolation is propoged. In what follows an explicit algorithm of C?
interpolation of given data is presented.

Tet us introduce : on [y ®iyq]

Soa(@) = fi1 — () 4 fipw(d) + hani(tt — 20° + 28 — v(1))/2 +

(28) A4 hami (202 — 10 — ()2 + REM (314 — 818 + 612 — vw(¥)/12-+
+ R2M, (310 — 4% 4 o(1))/12,
where notation Sig(x) = m, and Siy(w) = M, ¢ =0, (1), n, are used.
It is supposed that generating function.? satisfies conditions (2) and
(21). Taking into account results from the previous section it follows
immediately that in the case when
(29) M, = 4([)_18({1)/115 -5 )\ig(il—)l/hi—l) + 7\i(mi_1 —l* 3971,’)/711__1 —
— wiB8mi + meg) by =1, (1), 7 — 1,

the spline (28) is from the €% clasy of continuity, therefore in the case
when m: are defined explicitly the spline (28) is the explicit one. T.el

us compute m; using the following finite ditference formulae

(30) mip = 0,82, + g8 4 wyid + wgidy, =2, (1), n =12
where
oy = — Wil (he A i) Dhics =+ izy) (hicg + hioy -+ T (hicg & faey

+ hi + hf+1)]1
Tgi = (hz‘—g —‘r ]1[_1)2 (]I,'_ 2 4* hi"l *}* h;) 0(15/( [(h’l'—l + hi ~l— hi+1) (hz + ’Li+1)2],
ogi = [Ty + (Rieg 4 Rizy) oge — (hicg + 20 4 higy) o (hiey -+ ha),y

Ogi = 4 — oy — i — U

Ag a result values of my, j =0, 1, » —1, %, and M, j =0, 7, remain
anknown only. Thege values can be obtained using end conditions. The
following two types are considered only.



112 . 1. 1. Verlan 10

a) Suppose that f®(a) =f" and FOb) = f5, I — 1, 2, 3, are known.
Then we have mg = fi, m, = f), M, = oy My =) and

my = 4850 — 3my + hoM, — B3 15/6,
May = A8, — 3my — hu M, + RS /6.

D) It fa) =fi, fO) =fi, f(@) =Ff, f(@ay) = fimay f7(a) = fy and
1"(b) = f3 are known then m, =for ma=f0, my=f, m.,=f_,
M, = f" and M, = f,’ is an obvious choice.

In the case when the corresponding end conditions are not availabie
the interpolant can be constructed on [a,, Tp_g ]

What can be said abeut interpolation accuracy ? Let us consider

So.a(®) — f(2) = Sy () — Hyo(2) -+ Hyp(2) — f(=@),
or a

(BL) | Susl®@) — f@)] < [Sug (@) — Hugl@)| + |Hogls) — 1(2) |.
For the first term of the right hand side we have
| Bua(@) — Hoal®)] < I — F1] X | (8 — 265 4 20 — o(t))] -+
oIy = fioal X 12— ¢ = ey + {100 — 17 x (30 — o0y
6 —e0)] | Mayy — flha] X |30 — 40 () e,
@ € [@1y 1,,].

From the previous relation it follows
05 — Hoglle < b x max (Jmq — fi]) X Kyv) | b x
matx (1M — f71) X Ky(v)12,

where K,(v) — mziux ()(8* — 263 + 2¢ — ()] 4 (268 — 8 — v(€))1)/2 and
K ,(v) was defined in the previous seetion. So, we have to estimate
me — fi = 8, + a8 + a8 4 %8 — f}

now. Substituting Taylor series expansions for fni=t—2,i-1,
t 41, £ 4 2, with remainder term in the integral form at the point x,
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into the last relation we get

wme — fr = (1/24) X {(— cqifhi_g) X [ S (1_g — )* fO)(v) dv+
+ S (@ — 0 — () — 0)'1f(0) Ao ] o

~ (aaifhiy) X S (g — )" fO(t) dot

44

+ (agifhs) X S (®ryy — O fO(0) dv — (agefhiyy) X

e

e

. S (@i — 0)' — (@1 — 0)*]fD(v) dv—
— | s 0w 0]}

Using the Hoelder inequality to the last relation and computing the corres-
ponding integrals we have

(32)  [me —fil < (1/120) X {[(hiey 4 Tig)® — Biy] X oyl /eyt
+ iy lew| A Bilea] 4 [(Be 4 Begy)® — BT X
X Nogilfhipsd XN oo

Taking into account that —1 < au;< 0, —1 < oy < 0, g > 0, g > 0
and oy 4oz =1 — oy — ag < 3, it follows from (32)

(33) lme —fil < (13/24) B [ f® |-

There are no problems now to prove that

] ]lfc'.—fi”l = l 4(}1-18{1)/71'1' - 7\531(91/}1‘5—1) + }\i(mi—l + 3mi)/h’jt'l-l o
(34) B+ mayy) [he — [ < B3(1/120 4 13p/6) X | f® ||,
where p == max (hy)/min (e, k). i
Ce—3Kisi4-2
8 — c. 1080
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Thus from the above we get

(85)  W8us — Huale < B X (18 X JKy(v)/24 -+ [1/120 + 139/6] x
X I p(0)[12) ||/(5);|oo

The next theorem can be stated now

3 'THEORElr\zE 3. S@eppose. that [ € W,[a, b] and end conditions of the type
) are used. Then for spline (28) generated by the function v, which holds
conditions (2) and (21), the following estimate

180.5— flle < I Hs — flle 4 B X (I (0)/720 - 13 X Ky(v)/ 24+

+ [(L/120 + 180/6] X K,(0)/12) |f)],

is valid.

Taking, into account results from sect st 5
ot } o ?,ﬂ t .a,cgunb E(,s.ulth h(_)m section (2) and estimate (35) the
P of the theorem follows immediately from (31).

. Nm}ler] cal examples which illustrate the algorithm presented in
this section are given Dbelow. Test functions are the same ax in the
. . - 3 . . - . . ] . . : D . « ‘
previous section. Initial data were given on [— h, 1 & ] and noncom-
Pplete end conditions of the type h) were used (M, an M, were not given)

e given

Table 7

1' _—— - 0 -
fl fz ,‘3 /V/J
0.1 1.792—7 2.97412—3 2.085E—5 3
L & 3 2.080FE — 1.414712—2
0.()1_ 1.9615—12 8.581<—8 2.231E—-10 5.6615—06
0.005 | 6.16=—14 | 2.16321—9 | 6.9715—12 1.715-7
Table &
It
I i Som
A | fy | s s
0.1 8.211—6 1.38115—1 9.5915—4 5.542RK K
- A Y o P 3 5.542E —1
O.OI,V E).fl()]:—]() 3.014E—35 1.0015—7 3.205E—3
0.005 | 5.971<—11 2.02212—6 6.2812—9 2.181E—1
Table 9
h E‘l- .
ho |k N
0.1 ?.011574 6.97 5. 71E—-2 50
ﬂ.01— 5.781i—7 1.8412—2 6.06331E—-5 1.974
0.005 | 7.302KE—8 2.454E—3 8.31—6 2.66 E—1
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Table 10

E
h 4
i Iy Is [s
0.1 3.33E—2 3.91115--2 3.76 3.37E+43
0.01 3.8945—4 | 1.224E-+1 4. 48E—2 1.3141E+3
0.005 | 9.86E—5 3.3 1.123E—2 3.58E--2
Table 11
15
h = 2
h 2 | fs
0.1 2.93 3.40E 4 3.203E 42 | 5.421124-5
0.01 3.40E—1 1.081<+4 3.965E+1 1.165I+6
0.005 | 1.75E—1 5.8215+3 1.9881E+1 6.340312-+5
5. SUMMARY AND CONCLUSIONS .

Finally it should be mentioned that the problem of shape preser-
ving interpolation using splines presented in this paper is of great inte-
rest. We shall return to this problem in one of the paper which follows.
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