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1. INTRODUCTION

In [2] Grefenstette and Baker discussed the impact of the fitness
functions on the behaviour of genetic algorithms. They showed situations
where Holland’s Schema Theorem (see [3]) does not have a clear interpre-
tation and suggested, for a rather large class of genetic algorithms a sim-
ple but useful characterization of the implicit parallelism.

In the present paper we study a class of fitness functions for genetic
algorithms using proportional selection. The first section contains the re-
sults in [2] eoncerning genetic algorithms using a monotonic fitness func-
tion and a monotonic selection algorithm. In the second section we study
a class of fitness functions which render certain sensitivity properties to
genetic algorithms using proportional selection. The last section presents
some conelusions as well ag our ideas about possible further work.

2. GENETIC ALGORITHMS USING A MONOTONIC FITNESS FUNCPIOX
AND A MONOTONIC SELECTION ALGORFTHM

Selection is probably the most important step in a genetic algorithm
because it determines which individuals will contribute (and to what
amount) to the creation of & new population. As in [2] we shall consider
selection fo be partitioned into two steps :

a. the selection algorithm, which assigns at each moment ¢, to each
individual & a real number tsr(z, t), called its largel sampling rate;

b. the sampling algorithm, which builds a new generation by crea-
ting copies of individuals depending on the target sam pling rate.

In the present paper we shall concentrate on the selection algorithm,
sonsidering that an optimal sampling algorithm is given. Thus we shall
study rules for computing tsr for an individual as well as the effect of such
rules on the allocation of trials to hyperplanes. This latter will be charac-
terized for a given hyperplane H at a moment ¢ by the target sampling rate
of the hyperplane H, defined by

tor(H, 1) — g @D

«&n m(H, 1)
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where n(H, t) denotes the number of representatives of hyperplane H in
the population at moment ¢ (denoted by P(t)).

TFor a problem formulated in terms of an objective function f, the
target sampling rate is given by composing two functions : « fitness func-
tion w and a selection algorithm s, that is

tsr(a, 1) = s(u(ax, 1), 1).

For the rest of this paper we shall consider that the fitness does not depend
on i, i.e. tsr(x, 1) = s(u(x), 1).

~ In situations when the objective function is to be minimized or when
it can take on negative values the fitness function is obtained by a trans-
formation of the objective function such that w(xz) = k(f(«)). However
these are not the only recasons for using fitness functions. Ag we shall see,
they greatly influence the behaviour of genetic algorithins.

The best known selection algorithm is proportional selection defined

by

w(@)
u(t)

where @(t) denoles the average fitness of the individuals in the population
at moment #. The first characterization of genetic algorithms, given by
Holland [3] is based on proportional selection.

In [2] Grefenstette and Baker showed that even for very simple
fitness functions (linear ones) the interpretation of Holland’s Schema The-
orem ig not clear. According to them this problem is due to the fact that
the theorem refers to the fitness function, which is a design parameter of
the genetic algorithm, instead of giving a characterization in terms of
the objective function. They suggest that characterizations of genetic
algorithms should state “how the space defined by the objective function
is searched by the genectic algorithm”.

In the rest of this seclion we give a short presentation of the resulls
in {2]. To make discussion simple in the followings we shall consider (wit-
hout loss of generality) that fis to be maximized.

tsr(x, t) =

DeriNiTioN 1.1. A fithess function w is monotonic if the following
conditvon holds :

w(w) < w(y) off flw) < f(y).

Note 1.1. As shown in [2] thigs class of monotonic fitness functions
include many frequently used fitness functions, thus it constitutes & na-
tural subject of study.

DerINITION 1.2. A selection algorithm is monotomnic if it assigns
a target sampling rate to each individual, at any moment such that

tsr(w, t) < lsr(y, O) iff w(z) < w(y).

Note 1.2. Proportional selection, selecltion by ranking, as well ag
many other known selection algorilhms are monotonic.
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The results presented in the followings will concern genetic algo-
rithms using a monotonic selection algorithm and a monotonic fitness

function. To give the central characterization of this section one more
definition is needed.

_ DEFINITION 1.3. Given the population P(1) we say that the hyperplane
Hyisdominated by the hyperplane H,, denoting it by H, < p,H, if

max {f(z)le e H; n P(1)} < min{f(e)|aecH, n P{)}.

Now we can give the following result ([2]):

7 TueoreM 1.1. In any genetic algorithm using a monotonic selection
algorithm and a monolonic fitness function, for any hyperplanes, H,, H, in

P(t)
H, < pHy= tsr(H, 1) < tsr(H,, 1)

The proof of Theorem 1.1 is based on the definitions and is straightfor-
ward.

This theorem, although it gives a weaker characterization of the
considered class of genetic algorithms than the Schema Theorem does, is
more appealing because it is formulated in terms of the objective funetion.

A more general characterization of the considered class of genelic
algorithms can be given based on the following definition :

DEFINCION 1.4, A hyperplane H, is ¢ om pletely dominated
by another hyperplane H,, denoted by H, < gHyif
maxy{f(«) e € H} < min{f(x)

The following corollary holds :

x e H,}

COROLLARY 1. 1. In any genelic algorithm usINgG ¢ monotonic selection
algorithm and a monotonic fitness function, for any hyperplanes H, and H,

Hy < Hy = Y(tisr(H,, t) < tsr(Hy, 1).

This result states that under the given conditions H. 2 Brows ab loast
as fast as H; does in any generation, in any genetic algorithm of the con-
sidered class.

In the end of their paper Grefenstette and Baker suggest the search
for conditions which allow characterizations of the sensitivity of selection
2,}g01'it]11]1s. The next section presents some of our results in this direc-
ion.

3. GENLETIC ALGORITHMS USING PROPORTIONAL SELECTION

In the previous section a characterization of genetic algorithms
using a monotonic selection algorithm and a monotonic fitness tunction
was given. This covers a broad class of genetic algorithms uséd in prac-

2 — c. 1080
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tice. However these results can neither give bounds on the growth of the
representatives of hyperplanes, nor capture sensitivity aspects of genetic
algorithms.

We claim that one possible reason for these deficiencies is that in
the class considered some selection algorithms may “work against’ some
qualities of certain fitness functions. To illustrate this let us consider the
fitness function

w, = log(f(w)) — 1, e < f&) < m for all possible &

(which is similar to v = b — log(f(#)) considered in [27]) where fis to be
maximized.

This fitness function has some nice properties which make it appea-
ling, such as

a. it veduces the danger of premature convergence by damping oub
differences between large values of f(a);

b. makes a great difference between large and small values of f{x).

For a genetic algorithm using a moenotonic selection algorithm and
the fitness function wu, we can apply Theorem 1.1. However Lhere are mo-
notonic scleetion algorithms which annul the mentioned qualities of au,.
Tet for instance the target sampling rate be defined by

eu+1
M

z € P(1)}. Substituting u, for w we obtain

tsro(x, ) =

where M (1) = max{f(x)

tS‘I‘({L‘ t) ——_i”ijl__._M_
il M) ML)

The genetic algorithm using tsr, and w, uses a linear selection which lacks
the above-mentioned properties.

Tor the reason mentioned and illustrated above we shall discuss
genetic algorithms which uses proportional selection. Obviously this se-
Tection algorithm is monotonic and in additioan it has the following pro-
perty :

For any hyperplane H, at any moment #

S P i it
feu n(H, 1)
()
xeH ’E/(E)N(H, t)
w(H, t)

a(t)
wheve u(H, 1) is the average fitness of the representatives of H in P(3).

We shall call such genetic algorithms Proportional Selection Genetic Al-
gorithms (PSGA).
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Note 3.1. Obviously all the results in the previous section are valid
for PSGA-s using a monotonic fitness function.

As shown in [2], results similar to those presented in the previous
section can be obtained for strictly monotonic fitness functions and strictly
monotonie selection algorithms. In the followings by monotonic fitness
function we shall mean strictly monolonic ones. Obviously proportional se-
Jeetion is strictly monetonic.

Let us now try to give a characterization for PSGA-s using a mono-
tonie titness function with properties similar to those of u, above. In order
to do this we need some more definitions.

DEFINITION 3.1, We say that w is @ convex filness function if for any
£y, ¥y aRA Xy

[f(2y), f(@g), f(25)5 ul > 0

where [a, y, z; b] denotes the second order divided difference of the function
hoin x,, @y %3
The fitness function w is said o be concave if for any xy, ; and 23

[f(ay), flag)y flamg)5 w] < 0.

The following two theorems give a property of PSGA-s using a mo-
notonie and convex, respectively concave fitness function, which males
them interesting from the point of view of study of sensitiveness.

TurorEM 3.1. For o PSGA using a monotonic and convex fitness
function u, for any my, z, and xy in P(1) such that fl2y) < flaeg) < f(ag)
flas) — flzy) = fl2a) — flay) = 181(@ay 1) — (s7(iy, 1) 2 187( @y, 1) — tsr( ;)

The corresponding result for concave fitness functions is given by

TarorREM 3.2. For @ PSGA using a monotonic and concave fiiness
function w, for any x,, u, and xy in P(t) such that f(z;) < flas) << f(23)

f(s) — f(@) < () — flwy) = 11(mgy 1) — t87(wyy 1) < to7(@yy 1) — t57 (2l

Sinee the proofs of the two theorems are absolutely analogous we
shall only give the proof for the latter one.

Proof. (Theorem 3.2.) Since u is concave, we have

[fm), flaa)y flag); ud <0,
which by the definition of the divided difference is

Ul xy) — w(2y) u(xy) — ul xl)_

flay) — fla,) J(wg) — flmy) < 0.
S(xg) — flz)
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Using the Lypothesis that flm) < fla,) < fl@,) we obtain
W Tg) — u(xy) & w(2s) — ula,)
Jlag) — fla,) Jla,) — f(“’;)l

which, since w ig monotonic, is equivalent to

W) — (o) < (u(s) — () %
The condition f(w,) — [(#5) < f(w,) — f(®,) means that
Kag) = flas) ‘
Jlwg) — fla,)

by which the previous equality becom es

wW(ws) — w(wy) < wa,) — wiw).
Dividing this inequality by @(t) we obtain
t81{ 3y 1) — tsr(wy, 8) < tsr(ay, 1) — ts{ ey, 1),

which completes the proof.

Note 3.2. Theorem 3.1. states that a PSGA using a monctonic and
convex fitness function stresses the difference between high values of f(x).
As such they are prone to premature convergence bul seem to speed up
growth for the best fit individuals. This property makes this clags of ge-
netic algorithms to be appealing in advanced stages of search. On the other
hand, according to Theorem 3.2., a PSGA using a mongtonic and coneave
fitness function damps out differences between high values of f(#), redu-
cing by this the rise of premature convergence. Due to Lhis property ge-
netic algorithms of this clags are advantageous in early stages of search.

Note 3.3. The previous note gives an intuitive explanation why sca-
ling methods arve suggested and used in selection practice. hi

Note 3.4. We could have obtained similar results by defining con-
vex and concave selection algovithing. The reason why we did not do so
is that in our future work we intend io give some means Lo compare
sensitivity of members of a class of genetic algorithims and in our view the
first step in this direction would be the study of the sensitivity induced
by the fitness function for the same selection algorithm.

In the following we shall study how convexity (concavily) influen-
ces the allocation of trials to hyperplanes. In ovder to do this we shall
dicuss in details PSGA-s using a monotonic and concave fitness function,
the results and all the steps made for the convex case being similar.

We have the following result :

TumorEM 3.3. For ¢ PSGA using a monotonic and concave fitness
Junction and for any hyperplanes Iy, Uy and Hy in P(t) such that H, <
< pit Hz < it If_']

max {f(w)[w e Hy n P(t)} + max{f(z )|z e H. n P#)} <
< 2min{f(x) e e Hy n P(t)} =
= 18r(Hy, 8) — tsr(H,, 1) < tsr(H 4, 1) — tsr(H,, 1)
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Proof. We shall denote by 2™ a member of P(1) such that f( ) —
= min{f(a)|a e H, n P(t),’. for 4 =1, 2, 3, and by @™ a member of P(1)
such that f(are) — max{f(x)|x e H, n P@)} for ¢ =1, 2, 3,

With these notation the left side of the conclusion of the theorem
becoines

f(wrsnau) __,__ f{wllnax) < Qf( 9;‘3““),
which ig the same ag
f(:lj,gmx) - | f(a%nm) < f(wzlmn) _ f(fl'}]]"nx)-
By the coneavity of the fitness function w this Impplies

’lt(ﬂf]'dnu) w u(x'z““‘) < ’u(a‘i’;‘"‘) - ;u(’,L,;llzlx)

,
which is equivalent to

— N 2 —— » GT ¥ -
S n(Hyt) & w(H,, 1) st w(Ha1) -~ n(H,, 1)
Since w ig monotonic we hgave

n(H,.1) u(x};‘“) (M.t ,h,/(wgun) 5 ;;{Hi_r} ‘I'J.("L‘;Hm) L_n(};il‘,t,) u(wrlnnx)

u(2) _ #(x) < w(x) _ (@)
ety g) S GunHyy) & n(Hy y) 2 i,
that is

WHy, 1) — w(H,, 1) < U(Hy, t) — w(H,, 1),
which divided by #(1)( > 0) gives

tor(H,, 1) — ter(H,, 1) < tsr(H,, t) — tsr(H,, 1).
Thus our proof is com plete.

Note 3.5. Theorem 3.3. and the eorres
fitness functions give some explanation on the behaviour of a clasy of
genetic algorithms, based on the nature of the underlying fitness function.
They establish conditions under which a genetic aleorithm makes strong
distinction between either very fit individvals, or individuals with low
fitness.

Note 3.6. Sinee, as stated af the beginning of {hig paper (as well ays
in [2]), the fitness function is » design parameter of g genetic algarithm
these theorems can give some support in choosing this p’zﬂ ameter. k

However there is one mare interesting thing about PSGA-s using a
monotonie and cither a convex or-a concave fifness function, which (rEn—
cerng the relative prowth of representatives of two byperplanes. We have
the following theorems. |
. Turorem 3.4. For o PSGA wusing a monotonic and co
Junction w and for hyperplanes H, and 1 o 1 P(1) such that H,
Jollowing inequality is true:

ponding result for convex

nvex fitness
< pa Hy the
[:"]]']I]]’ J_Y\’lil,\')

My !

Isr(Ho ) > |1 - =

’ilr(Hl,?)_ (.]“(dfgﬂin) _f(“m\)) ]!8,,(111, 1),

[xmin, xmax) ulx) — 1 .,'mm
where m,' 71 :mm{ e _I&—-—’ ) lxe[a,{"‘“,«ri‘”“)}.

f(@) — flapm)
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~TaROREM 3.5. For a« PSGA wusing a mowotonic and concave Jitness
function w and for hyperplanes H, and Hy in P(1) such that H, <. Hy the

following inequality s true: f
('1']2““" xg’lﬂx]

Ty
tsr(l,,)> |1 4+ —-———
(Ha ) [ 7 w(H,, 1)

W, RN — min { w( g™ — w(x

mwwamwﬂmmmx

)
where My 2 I x e (wlzlllu’ mgmx] .

flarmy — fa)
Note 8.7. Since the values of f are considered to be bounded and 1w is
monctonic both of the considered minimums exist. - )
We give the proof for Theorem 3.5, for the corvesponding one with
convex fitness function the proof is analogous. _ .
Proof. (Theorem 3.5.) Since w is a concave fitness function, using
the same notalion as above we have
[f(@=), f(ad™), f(w); u] < 0 for any : f(w) € (fla), flag™)],
that is
’Ql/(.’,l/') . ’ll,( m}z“m) ’M(.’L'}gnm) - 1‘L(m1111ax)

flz) — Ay fa) — far) <0 for any @ : f(w) e (f(ay™), flay™™ ].
(@) — For™)

Thig is the same with

min

w5 u(aper) + DB (o) papes),

f(@) — flad™)

whichimplies

min max,
(g, 271

w(af™) > Wz + m, (fag™) — fat™))
By the relation H, < p. H, this implies

X
(xlll n A.lllaz

my " (g — fap)

tsr(Hy 1) > isr(Hy, t) -

(1)
which is the same with
. (x}a‘lll“' A,lzna.x]
r( [ M » o
M > 1 e —— (f(.’l,‘!&nm) _f(mxlwl ))

tsr(Hy, 1) w(IL, 1)
Mhis latter inequality is equivalent to the one we had to prove, i.e.

min ,max
(,12 , X ]

m ) s
ot M (fay — .r,?wx))]tsr(ﬁ ),
tsr(H,, 1) > [1 + o 1) (flap™) — flw 1

Thus for PSGA-s which uses a monotonic and either a convex or a
concave fitness function we could give a bound of the relative growth of
hyperplanes in (%)
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4. CONCLUSIONS AND TUTURL WORIK

The main point of this paper is that there is a rather large class of
genetic algorithms for which some sensitivity properties can be establis-
hed de pending on the nature of the underlying fitness function. As in
our main reference [2] the results are formulated in terms of the objective
function.

The interpretation of the mentioned results show that for PSGA-g
using monotonic fitness functions the latters should be chosen to be con-
cave in early stages of operating and convex in the advanced ones. This
also suggests that it is useful to secale the fitness function depending on
a parameter which somehow reflects the progress of scarch. Concerning
this problem there are at least two questions which may arise :

a. How to design a (parametrized) fitness function to exploit the
presented results ?

b. What would the parameter which directs scaling be and how
should it change during the operation of the genetic algorithm ¢

Ina further paper we shall {ry to give some possible answers to these
two (uestions.
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