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1. INTRODUCTION =

A scientist who has compiled tables of data wishes to reduce them
to a more convenient and comprehensible form. He accomplishes this by
representing the data in functional form. He selects 2 class of funchions
and chooses from this class the one that best fits his data.

In a computational structure sense, polynomials are the simplest
“finitely representable” functions that can be used in approximating con-
tinuous functions. It seems reasonable to consider the next simplest class
to be the rational functions, and they are usually a somewhatl more effi-
cient form of approximation. A rational function E(t) = P)/Q(t) is one
which can be evaluated as the quotient of two polynomials. If Q(t)#0,
then a single division yields the final result.

Actually, a rather different algorithm may be less time conswming
depending on the time required for the multiplication and division ope-
rations in particular computer being used. The alternative algorithn is
devived by transforming R(t) into a continued fraction [4], [8]). These last
years some theoretical aspects of continued fractions have Dheen discus-
sed in many papers, f.e. [2], [3]. If the division and multiplication opera-
tions take about the same time in the computer, then there iy a decided
advantage In using a continued-fraction expansion.

The purpose of this paper is to demonstrate a method for evaluting
the coefficients of functions R(t) :
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where (¢ — 1) denotes the stage of the polynomial Q(t)r and Iy, j =
=1,2, ..., 9 2, are prescribed values or functions K; — Ky(ma,_,),
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and
RB(t) = (2, L/’U Fipyy ’ Lﬁa 2) =
1 3 1 - Al,l’,
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Q= Bhild —
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3 g—1=1 L';q 22) +m,

where L, — (L, LY, ... ng‘}?), J=1,2,...,¢—2, are prescribed va-
111887 L‘i('i)l e L(rj) + h(”, r =1, 27 Ty ki iy 17 R > 9. )

We now formulate the core of our method. Suppose that Iy values
14, @8 & monotonous sequence of real numbers at some kqy real equidistant
points 1, are given, where ¢, ,,, =ha A% 0=1, 2. kg —1, P>,

We propose to develop a method for determining R(f) as an appro-
Ximating function in terms of the values 2y ;.

Define
(1-4) zé",is_l g Ts;;s_l(ts,is_lv Lsy Tsﬂ)

for s =1,2,.. ¢ — 1 and unknowns By' = Bafig) ity a;‘s,lks), where Tq,ig

are elements of the vector 7T, — (my, ..., My, _ ).
Now, suppose that
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>

I
] a/s,zJ

$igq = tsvis-.] -}~ T‘?'H”'s

(1.5) g3

K3
&

[

is Justitied for s =1, 2,...,q4—1, where 2k, < ke oy — 1, Wsji, = Asyi,
and for b =2,3, ..., — 1 we denote

> I (h=1)
tb,ah — E‘b—l "

Under the assumption that ky =1 holds &, =1 too, for j =2, ...
s —1, %, = K; , and t,, —p '=2,3,...,9— 1, take the values of

¥

Uigy Yo = 1,2, ..., gy 2,4 = A.

Our method determines values of vectors &y and T, by solving of a

linear overdetermined system and a polynomial equation of the ke -th

order, which may be in some cases realized parallel. Details of computa-
tional implementation and results are provided.

2. THE MAIN NUMERICAL CONSTRUCTION

Thus the suitable approximation R(t) has some form of (1.1), (1.2),
(1.3), we get a system of I, equations of the form (1.4), (1.5). For one, we
determine the vector 7, under the assumption that ¢ — 2 for simplieity.
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The first differences from values z1,;, we can express in the form

LI .
(2‘1) Rlray ~— &, = — W0 I =T ﬁh_—,_‘_*u
=1 (tl,r + fﬁ%ﬂ'l) (tl’rﬂ -+ T2,i1)

P=1,2 ...,k — 1,
or, in short,
L}
(2.2) o — 8y =Y dij
=1
where the relation
by + Tz.e']

(2.3) ' dypr;, =
tl.r+2 + T2,51

dy; = Ui, -y,

holds for r = 1,2, ., &, — 2, anq 4, = 1, 2, ..., k.
Bvidently for fixed Wr=1,2, .., ky — &y —1), (2.1) to (2.3) give

A

p—1
(2.4) Pl = Ry pyp = E (H “"HJ;) driyy, p = 1,2,..., fey,

h=1

(if p = 0, then (2.4) becomes (2.2)).
Note that (2.3) implies the following result :

(2.5) Urtei, = Clty), € = 0,1, ...,k —1,
where -
(2.6) Oly) = — =9 +2y

(¢ +2)(1 — g) + 2¢

Hence, instead of (2.4) we have -
A »—1 )
(2-7) BLsrpil = Bppyp == E (II Oﬂ(“hil))dﬂn p=1,2, .. i T‘:l-
i,=1 =0

Let  wy_p, p= 0,1, ...,k and »— L2 lg—%—1 be
Parameters where Ror = 1. By adding a multiple of the r-th equation of
(2.2) to multiple of the first equation of (2.4) we can broduce a new equa-
tion containing “Lrit R Byie — 80y, and by adding this to a multiple
of the second equation of (2.4) we produce a new equation containing
Blirsy —' %y, Sriie — FLrin #eeg — 21049. The obvious continuation of thig
Process utimately results in a new sel. of equations not containing d,, :

iy
(2.8) E oty (%1 repiq
P=0

2

— Zrip) = 0, r=1, ’---57“’0‘*7‘;1‘15

where the parameters My, 8¢ the mentioned ‘multipliers’.
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Using relations (2.2) and (2.7).in (2.8) for each 4, 7, =1, 2, ..., k,,
we obtain immediately the equations

I3 p=1
(2.9) Wty r - )1_, n-kl_,,,,(ﬂ C’,,(uv.-,,)) = 0.
p=1 e=0
r=1,2, ...,k —Fk — 1.

Kow, using (2.6), equations (2.9) become
ky
(2.1.0) Y, Jpuir =0,
p=0

for v = 1,2, ..., ky — & — 1, where J, depends linearly on mn,,, n,, e
o oes My ’an7d u,’,:, 3:(0, 11), % Ly 1,2, ..., k. We kunow from algebra that
the coefficients 'J], of each polynomial equation in (2.10) can be expressed

in terms of the roots. i M e
In practice, it is possible to find expressions in the form

(2.11) Ny,» = QO('H‘I‘,D Ur,2y -« -y u".kl)1

! : 1 p i ality  (2.5) for
r=1,2, ...,k —k—1; b=1,2,..., k. Using equa
Uiy '1',, = 1, ,2, 0 .oy 7'.:11, an(i, applyin’g the property of roots of the polyno-
mials (2.10), (2.11) becomes
(2.12) Mp,p = Xp(Upqy Upy - - oy Bk,

’ ] ;b= b, wher , ave roots of the
r=1,2, ...,k — Nk —1;6=1,2,...,k, whele‘ul,ll are 1oo b
first 1;01;711011,1133 equéi-tion ;n (2.10). The roots of t.lns.; polynomial equation
can be éxpressed in terms of the coefficients J,, i.c. ngq, %y, « ooy Ty
Turning to our equations (2.12) we have

(2.13) My = Yy(Moqy Rugy o ooy Migt),

r=1,2,...,k—Fk—1; b=1,2,..., k.

?
Substituting (2.13) in (2.8) we obtain a linear overdetermined sys-
tem

k
(2.14) )1,, Ny p 1 L {2y Rriny o oy Blptir1) = 0,

=0
r=1,2, ...,k —Fk —1, coqtaining Iy unkno‘wn vp.a.r;‘t?letefrs 1712 ,é,
gy - - -y M1 SUCh overdetermined system can be bolve(_l mB 1(- dj‘,ilieanc‘i
Background material on L; minimization can bg fqund n . Ialr‘ol s
Roberts [1]. We propose to solve gystem (2.14) in the least squares ser

ky—ky—1 ¢ &, - 2
(2.15) E= %, ( N B—p1 L, o(21y By e - oy Birivo) |
=1 \p=o
We try to determine parameters m, ., b =1,2, ..., k, from the
system
or

=== 0
(2.16) T
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It is now clear that the accuracy under which we can compute roots
Uiy Uy 0yt 0f the fivst polynomial equation in (2.10) depends
essentially on the accuracy under which we can evalute the coefficients
Jp of the polynomial.

We see Ty 4, =1,2, ..., ki as a result of relation (2.3) (for v = 1)
is well defined. In our special case was ¢ = 2 that means My, 1y =
= 1,2, ...,k for (1.1) are calculated.

Returning now to relations (1.2) and (2.3), i.e. if we take g =3, it
follows that the coefficient ™y, can be compuled by solving the nenlinear
equation

(2.17) (K — (4, RO Mg, 4+ 2HO - My,))
() — (fg 4 ) (tq 4 2O Mi,))

Uy =
(i’l-l(tl.,[ + my,) + )
((fs + 20O) 1 + 209 4- ) - 1)

In order to caleulate the components i, 4 =1,2, ..., k, of vec-
tor oy, we use the values of vector T,. Then equations (1.4), (1.5) form the
linear overdetermined system of ky equations with k, unknowns Ty 1 =
=1,2, ..., k. This overdetermined system is solved in the least squares
gense under the assumption that &, is the rank ofits malrix, Using our pre-
ceding results we obtain Lhe approximating function R(f) written in the
form of (1.1) and (1.2).

Since we shall confine our attention to the approximating function
L(t) written in the form of (1.3). Therefore we must consider anew the
same approach to evaluate T\, as before. This is, at the same time as (1.4),
possible to write in the form

o, 0 Ly " i ? y I
Zo6, = Toi (o, @y, Tg), g =1, 2y 0y by

It is quite easy to see that the computation of 7, can be realized
parallel to the computation of 2. It seems plausible, Lherefore, to repeat,
Lthe procedure (1.4) with 7, &y veplacing Ty, m and continue to repeal the
process until the desived values 7', a,_, are achieved. This completes the
evaluation of coefficients for the funetion F(t) given in the form of (1.3).

o NUMERICAL  LXPERIENCGE

One may obtain the data by observing situations ocemrring in the
nature, or one may set up experiments in which conditions are controlled
as Lo favour the process of phservation. Suppose we have a monotonous
sequence of &, measwrements Bl Tg= 132, 1 oy gy recorded when {he
clock indicated times i, and we are interested on finding the coefficients
of the function R(#) given by relation (1.1).

Using the resulls of (2.16) tor ky = 2,3 we can obtain from (2.10)
the next formulas, i.e. Uriy 4 == 1,2, ..., k, are Toots of the system of
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(kg — Ky — 1) equations :

a) by =2
(3.1) (1 — ny,)ud, - (I 3nyy — ny,) 4, + 3, = 0

b) & =3

(Rgr — g, )ud, 4 (1 - By — Bty 4wy, ) w2, +
{3.2) F (1 — Bny, + 6n,, - 204, )8y, + G0y, — O
where r = 1,2, ..., &, — ky, — 1. ’

ing to the reas bne simplicity, our technique will be presen-
ted fo? }:7;11:% J;% 21]16(117?? in‘zoigllflgllllll?‘?}fg%l’opeH) of 1‘010ts of the polyno-
mials in (3.1), (2.13) becomes
, 20, + Hy, — 3 L
(8.3) My = 20, -+ By, + 6

where r = 1,2, ..., 11, or exactly

_ Buy, 4 COnyy, + D e Hny,y + 1&1_ —I-J'r :
 Bny, By, 4G ! By + Frg,y + G

. Loy
where the coefficients B, ..., J are given in Table 1.

(3.4)  my,

Tabte 1

) B C D E " € H I J
0 0 1 4] 0
']) 1' ? —- l)p) 2 1 s} —} t:)
3 *H — 8 i) 3 10 — i
/j ~; _,(1) —bh 3 2 5 4] (1‘
5 —13 —8 —24° 14 10 2 r2 1 ](;
6 —22 —15 —35 20 15 28 5 ‘3 !
7 —11 —8 ~16 9 7 II% 3 2 2‘1)
8 —46  —3i —63 15 28 4‘3 14 }(r) 21
9 —61 —48 —80 44 34 O) . 4? 5 ?3
10 —26 -.21 —-33 18 15 .iz‘ ”f )7 ;r
11 —907 —80 —120 (I8} 55 74 39 ,_h r.;
12 |—118 —99 —143 77 66 91 44 36 55

g " A b arela 3 2"\
Now, we complete our expression by Wozkmg for \&&1@ in (2.8)
(%ub@ﬂituti’on of (3.4)) and obtain a linear overdetermined system

oy [—L20r + (I — C)zgyyy + (0 — B2 sy + F2pia] +
(3.5) + my,[—Hey, + (I — B2y 4 (B — B)zyrig + Ezpeig]

+ [—=Jdzne - (J — D)z’i,,.ﬂ + (D — G)%,Hz + GQ‘LHa] =0,
r=1,2,...,12.
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. The unknown parameters g, m, sre caleulated by. minimizing
(3.5) in the least-squares sense. Hence we can compute roots Wi %45 OF

the Fivst (5 — 1) polynomial Cquation in (3.1) Hy the subroutine POLRT
from SSp (Scientific Subroutine Package). '
We complele the calenlation of (1) by
nined system (2.1) for unknown parameters
We give two i1 ustrative problems to v
applied. The firgg applies our method to the case with positive Wiy By =
=12, ..., k. The second one handles negatiye M. ; ;
Byample 1. Suppose that 15 values z, iy @8 the values of the funection
/(i + 1) 4 Y(tie, + 5) at 15 equidistant’ points 4, are given. As the
first case we calculate the approximation Bot) for by, = 2,4, =1 30 — 5,
For the secong case, it we take 4, — 2yt = 0.5, i — 1.4 4 Cconveniend
approximation R (1) is obtained. ‘Some resulis are presented in Table 2,

solving the linear overdeter-
Py @y,
hich eur techniques may be

Tubic_ 2
——_._.___________________________________-____
! ‘ R,(1), I‘:’;,(l) lexact — r,(1y | exact — EZ([)(

_— _____________________________

124 0.666667 0.100475 13 0.455101— 14

2 0. 47619 0.269507—13 0.832667— 15

3 0.375000 0.229261-13 0.165840— 14
10 0. 157576 0.104361-—15 0.102660— 16
20 0.087610 0.101491— 37 0103156 18
30 0.060829 0.706125 19

0.7a5122_29
e T S

Liwample 2. Here wo cousider the values of the function 0.5/(t1,i,— 1)+
+ 0.1)(4;, — 2), at the 15 equidistant points iy for kb = 2y Iy = B,
R ='0.3. Some results for Ry(1) are presented in Table 3,

Table 3
T T
/ ] (1) J exuel — R,(1)

————e— e}

—_—
3 0.350000
4 0.216667
5 0.158333

10 0.068056

20 0.031871

30 0.020813

0.111359 14
0.156480- 14
0.595010 - 15
0.246114 15
0.132696 17
0.203859— 19
—_—t

These vesults are typical of our wider experience with this method
applied to a variety of test problems. The quality of the approximation
£(1) depends on the determination of values I, j — 1 ...,g—1, and

ity =1,2, .., k. Prior to the question of which of forms (1.1), (1.2),
(1.3) to use in computing a best approximation is the question of whether
to prefer rational to Polynomial approximation, or bossibly other formsg
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such .as piecewise-polynomial or-piecewise-rational functions or spline
functions: The answer depends to some extend on the intended use of the
appreximation F(1) and in our case on preseribed coefficients N, K,...
ey Ky por I, LY, L(,jj) t00.
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