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BEST APPROXIMATION IN SPACES OF BOUNDED
VECTOR-VALUED SE QUENCES

5. COBZAS
(€luj-—Napocea)

1. INFRODUCTION
Le X be a normed space and Y a non-void subset of X. For g e X
put &z, ¥) =int {||z — Yll:y € Y} — the distance from 2 to Y, and let

(1) Pr(e) ={yeY |z — y) = (s, 1)},

be the set of the elements of best approximation of & by elements in ¥,
The set ¥ is called proximinal if Pr(x) = 0, for all x c X, Chebyshevian
if Py(x)is a singleton, for all e X, and antiproximinal if Py(x)=0, for
all 26 X\ Y. The term antiproximinal was propose by M. Hdelstein and
A. C. Thompson [8]. I. Singer [16] called such set a very non-proximinnal
seb.

H Z is a subspace of X and Y a hon-void bounded subset of X then
the Chebyshev radius of ¥ with respect to 7 is defined hy

(2) rad(¥, Z) —inf sup ||y — H
€Z yey

An element z, € Z such that Bupi [ly — 2ol : y Y} =rad (Y, 2) is
called a Chebyshev center of ¥ with respect to Z. The (possible void) set
of Chebyshev centers of the set y with respect to Z is denoted by cent
(Y, Z%). For Z = X we write rad (Y) instead of rad (Y, %) and cent (Y )
instead of cent (¥, Z). An element, of cent (Y) is calle simply a Chebyg-
hev center of ¥ and rad (Y) is called the Chebyshev radius of V. If % €
€cent (Y, Z) then the closed ball with center z, and radius rad (Y, Z) is
the smallest ball (i.e. a closed ball of minimal radius) with center in Z and
containing the set Y.

The aim of thig paper is to study the problem of best approximation
in the space I°(E) of all bounded veetor-valued sequences by elements in
various subspaces of convergent sequences.

For a Banach space B s 10} denote by 1(E) the Banack space of
all bounded sequences z: N -8B, N=1{,2, ..+ §, equipped with the
Sup-norm, i.e.

(3) ol = sup {lam): n e ¥,

for z € I™(E).
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Let ¢( ) be the subspace of () formed of all convergent sequences,
¢o( #) — the subspace of all sequences converging to 0 ¢ K and let ¢(F)
denote the subspace of all sequences 4 € I°(F) such that there exists the
Limit lim ||y(n)]. Because lim y(n) ==z implies lim [[g(n)| = ||2|| and

H— 00 —00

H=200 n
lim y(n) = 0 if and only if lim [#(n)]| = 0, it follows that c,(). c.ofl) =
t~+0o =k 00 E i i :
< ¢(H), 74 v
Equipped with the induced norms (i.e. the sup-norms), all these
subspaces are closed in I°(E) and therefore they are Banach spaces too.
In the case of sealar sequences, i.e. for B — R or F — 0, these spaces are
denoted simply by I, ¢, ¢, and ¢, respectively.

The spaces ¢, and ¢ are relevant in many problems of best approxi-
mation. For instance, they contain non-void closed convex bounded an-
tiproximinal bodies (see [8] or [» — T]). Also, there are many papers dea-
ling with best approximation in spaces of bounded or coutinuous vector-
valued functions (see, e.g. [1], [2], [12], [14].

The aim of this paper is to prove the proximinality of the subspaces
go( ), ¢\(H) and ¢(R™) in [®(B), respectively in I°(R"), giving explicit for-
mulae for the distances and for the elements of best approximation. Alse
we show that these subspaces are not Chebyshev subspaces of (), res-
pectively of I™(R™).

2. MAIN RUSULTS

S

The main resulis of this paper are contained in the following theo-
rem : e
THEorEM 2.1. The subspaces el D) and ¢(E) are proximinal in the
Banach space 1°(K), for an arbitrary Banach space E +# {0}, Also, o( B™) is
prozominal in 1°(R™), for R" endowed with an arbitrary morm. Ior gn ele-
ment x € () (vespectively in 1°(R™)), the distances to these subspuces are
given by the following formulae : |

a) d(@, (LK) = lim sup, || a(n)]|;
b) d(w, ¢,(B)) = 271 (lim sup, | a(n) || — lim inf, [jo(n)]);

) d(z, o( B™)) = 8, where § is the Chebyshev radius of the sei Qf:iqf7ﬁit
points of the sequence x — (m(n)) € I°(R™). ' 5 '
Proof. a). Let @ el®(H)\cy(B) and let d — lim sup, |a(a) |l..: Then

d >0 and we will show that || — y|| > d, for all ¥ € ¢y ). .
Let y € ¢(E). By the definition of litn sup there exists a subsegquence

(@(ng)) of (&(n)) such that lim |2(n)|| = d.
ko0
Then lim (fja{ne) || — [[g(ne)]]) = d, and PR
@ — yl| = sup {Jamn) — y(n)|:ne N} > Sup {llz(ne)l| — [l(no)]] : ke Ni>d.

Now, let I' = {neN: |fw(n)]| > d} and define y,: N — B by

el —4 for meT
() yn) — B w(n) or me
0 for n e N\ I\
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We have to show that Yo € 0o( B), i.e. lim Yo(n) = 0. Let ¢ > 0. Then the
set »PE ={neN: la(n)| > 4 + ¢} is tinite and contained in I It follows
?zhab ]_I Yo(n) |l = |||a(n) | —d| << for ne P\ T, and Yo(n) = 0 in rest
implying Him yy(n) — 0. ‘ ’

Also, |la(n) — Yoln)ll =d, for mel and a(n) — 4
Ja( " ] — Yom) || =
= llz(n) || < d% 1'{_)1' n e N\ T, implying ||a il Poll < d. JHAS lle — ;(“ )3” d,
o all y € B, it follows 1o — yoll = d = d(, 4(B)), 16, gy & P,
1) Since P, (x) = {a}, for all Z € ¢(B), it follows that 6(B) is a
pr (1:11:_1}11%;1.-1 subspaee of I*(E) and the distance from an element x e I(B)
Lo ¢y( ) is given by the formula a). e
h). Consider now the subspace ¢,(E) of I®(E)and let x (B)\ ¢(E)
Put § =lim inf lle(n) |, 8, =lim l§u Y = 2+ ) 1
K i sup,, ||a(n) E =213 d and
3=2%8 — ) Then 8= _ 3 — 5 ¢ ”_’ o iy
First, we show that [la — y | <3, for all ¥ € ¢(K). Let
; i = < K Y. Yyec E) and
let A = ’]141:: lu(n)]l. As @ ¢ e(B) it tl.ollo,ws 0 <3 <1 8y £E>0 ané( 3 > 0.

By the definitions of lim inf and lim sup there exist two Btri.ctly increasing

sequences (u}) of natural numbers such that lim || ) =8, 1 =1,2.
It 2>8 then Lim (lyud) — flamdl) = A — 5. imolvi

12— g1l = sup {@(n) — y(n) ]| :n'e N> sup § fofairf — n by Mplying

2 TR ) gy e N> sup {lg(ad) | — la(mb: k S ) 2
TS & then Hm (la(nd) |l — g(n)l) — 3, — & and o — g »

> Sup {lleni) |l — lly(nd) |l : €N} > 8, — A5 5, - £ 5
L H_U}v, we.int,_end to define an element Yo € ¢(X) such that ||z — Yol =
= 8, which will imply ¢, € Py () and d(w, ¢(H)) =3. To this end we
ave 1o consider several cagos.

Congider the get A={neN:0< le(n) || < 8} and A, — {ne N :
![:1;(%) [ => By 1f Ay is infinite then writing it as {)11;1 5 eN.}z, Wi}sh (n}t)'
strictly inereasing, it follows lim [la(al) || =3, Similarly, if A, = {ni ke

N . - " . - k”’m ‘ ] '

€ N} is infinite then lim la(nd) | = 3,.

-4 €0
Let 8, > 0. If both of {he sets Ay and A, are infinite then define
Yo: N — K by :

(5) Yolmi) = a(ni) + _‘?;ﬁ‘ w(ng),
: - ()
for ke N and ¢ = 1,2, n rest define g, by
£ .
(6) o) = agay M T3 <lalm)] < 3,
cafn)  for  g(n) = 0.

It A, is infinite and Ay is finite, then define ¥o(nE) by (5) and

p hi_f” wn)  for 8 < fa(n)]l < 5,

Yo(n) = 1 Jla(n)
x(n) for — Jla(n)| < 8

5 — ¢, 1080
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If A, is infinite and A, is finite then define y{n}) by (5) and

5 gy tor 8 < el <
MECT ~

o _ .
= Lo w(n) for 8 <|l@(n)|['or a(n) =0

- -~ 0} is alio finite because 3; > 0.
Lhis case the set {n e N : p(n) = 0} is also’ cause 3; >

311}(1)11}; E)fqthe sets /\:{l and A, are finite, then there eXists aastltﬁtlsy

i 1‘0ising sequence (n$) of natural numbers, such i_;hat ‘ 11r3n_ Hm(n§)|| _'S}i
;nrfd (i < '||z’v(41/f!-)ll < 3y, for all k e N. In this case _dé’fm(? Yo(ni) by (5) (wi

nj instead of n} and 3, instead of 8;), and

S am) for 8, < [ls(i)] €8 ne NN\A,
(9) Yo(n) = l[m(%)lll;(”) ot )| krp ot atml) > 8

W g -:Iv:EIZIGEII\T- . N PR
“hemI[ri%he l:;;:s(g 8, :}0 and A, infinite define yy(»;) by (5) and

S tor 0 < amy < 8,
(10) Yoln) = || a(n) ]| Y
2 for  w@(n) =0, - |
where z € I is such that ||z|| = £ (such an clement exists because we have

ed I # {0)). eAuj Sl undl F e ¥
Suppo%?galjlyy#iflogl) = 0 and A, is finite then thers-exists a subsequence
J Y

' i == N6 a(np) || < 8, for
(z(ny)) of (x(n)) such that %LHNI l@(ng) || = 8, angd & << [|z(nd) || X

all ke N. In this case define yy(ni) by (5) (with %?* ingtead of n, and 3,
instead of 3;) and

Sl afn) for 0 < [a(m)] < 8, m e NNA,
- _ JHlam)l fht 47 4
e R I L IE Y
2 for  a(n) =0 N
. B is again such that [|z] = E.
Ay ={n;: ke N} and 2z € B is again sue llef) = & |
T e it gn et el kA T 13,8, 4,
. k—co koo ; i Lot )
and y,(n) = ~a(n) implies |y, (n) || = £ Also if y(n) = 2 we have
lyo(n) || = ||z||mgl)a. 1t follows that in all of the considered cases lim (7))
o —
o 1.0 E ’ . : . 4o 1
— &, 13;(1;0?/(“ ZO((}lqg;{))‘ )| = |& — 8| = 8 if y_o(ni) is defltned by (5).
If yym) = ~w(n)  then |o(n) — yo(n)|| = |E — Ja(n)[j]| < 3. In
a{n _
the case 81”:( O)Hand #(n) = 0 we have y(n) = 2z and ||z(n) — y(n)]]
= E, - 8_ )

¥ shat in g 1 2 — %]l < 3 and, ta-
It follows that in all of the. considered cases || <9
king into account the fact that || — y|| > & for all y € ¢,(K), it follows
2 — Yoll = 8 = d(x, e,)(F)) and y, € Peymy( ).
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Since Pemy(z) = {a}, for all 4 e o(B), it follows that ¢(B) is a pro-
ximinal subspace of I°(E) and the distance from xel~(R) to o(B) iy gi-
ven by the formula b). .

c) Let ! = R™ bhe endowed with an arbitrary norm or, equivalently,
let % be an m-dimensional Banach space. For z e P(R™) o(R™) denote b
A, the set of all limit points of the sequence (#(n)), i.e. xe A, if and only
if there exists a subsequence ( ()i 1 of ( a(n)) converging to A. Because
(2(n)) i3 a bounded sequence in R™ it follows that A, # 3. Let £ be g
Chebyshev center of the set 4, and 8 its Chebyshey radius. As o ¢ o B®)
there follows & > 0. A. 1., Garkavi [97] proved that if L is a conjugate Ba-
hach space, then every non-void bounded subset of # hasg a Chebyshevy
center. In particular this is true for the reflexive Banach Space R™, -

‘Again, we shall show first that | — | < 3, for all y € ¢(B™). For
Y € ¢(R™) denote 1 =lim y(n) e R™ang Suppose that there exigts g, 0<e <

<< 8 such that ||z — Yl = 8 — &. Choose %y € N such that ly(n) — | <
< ¢/2, for all n > 7. It follows

e — i< a(n) — yon) | + yin) — o) < 5 — et L mgot,

for all n < m,. This Inequality implies that the set A4, is contained in the
closed ball of center n and radiug § — /2, in contradiction to the hypothe-
sis that its Chebyshev radius is §. Therefore ||z — Y|l = 3.

Now, define the Sequence.y,: N — R™ by

3 s
(12) om) =47 ~ Ty (el = 8 for ety — >

for |la(n) — Ell < 8.

We have to show that Yo €¢(R™). For every e >0 the set
{nelN:|amn) — Ell = 8+ ¢}is finite, for if contrary, the sequence (2(n))
would have a limit point A e 4, verifying |[x — El > 8 + ¢in contradic-
tion to the hypothesis that € i8 @ Chebyshey center of A, and §its Chebys-
hev radius. Consequently

lgtm) — &l = |lla(n) — g) — 5} <

excepting a finite set of natural numbers », so that lim Yo(n)
ing that y, e ¢(B™). |

Also, [|@(n) — yo(n)[| = 3 in the first case of the formula (12) and
l2(n) — yo(n)|| = [la(n) — £ < 5, in the second one. ' Therefore
le — %ll < 8 and, since le —y|| > & for all ¥ €o(BE™), it follows that
e — woll = & = d{w, o( ™) and g, € Prgmy(a). |

Again, for zec¢(E™) we have Pogmy( ) = {z}, proving the proxi-
minality of the subspace ¢(B™) in I°(R™) and tlie validity of the . for-
mula ¢).. .. = el 1y ; AR T I8 R B

=&, imply-
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3. REMARKS

m L U .Z
1° We have shown that the spaces o E), ¢,(E) and o R™) argfp; z;c;;n;zz_
n 1°(E) respectively in I°(R™). Now we shall show that no one
v ;

'8 a Chebyshev subspace. | )
SpacesC%nsider first the case of the space OO(E)._ For x el (147)\00(1(@02z %\v)e)z
h do— lim sup ||z(n)| > 0, so that there exists a sfubse&u(;ﬁngéN N(;w
ofm(fz(n)rsuch that lim || a(m)| = d and, || z(ng)]| > 0, for a N. Nc

k

P ‘ n ﬂN E = g(n), k=1,2,...,p, and
N defi : — by ya(nz) w(”h), k y 4y ' P

‘f/OI(‘n) :e Y (nffiln ere?s/t?. Then, for 1 <k < p, |ys(ng) — yo{m)|| =d >0
4 0

it yom) = XL =8 ) and [ga(me) —ys(m) [ =I19a(ms) = [ alns) >0
ok} — ¢ .
' S, inition of ¢,). It follows that
i = formula (4) for the definition of ¥,). _
;/f ?éogn(}})ﬂ)— ;p (:ée?/(, Oland ||(:v — Yol = d = d(a, ¢,(I0)), showing that y,,
4 0 ’
X o » P
By Pﬁ(giigf l)et @ € I°(E)\¢(E) and let A; ={nj:ke 1\{}, 311;);11;82,03;,114;(12?
he sets of the strictly increasing sequences of natura nu e t7he el
K g_ ?g ihe proot of the point b) of Theorem 2.1. Then, ﬁr%c }?at )
1t%.?ared cases, there exist j € {1, 2, 3,4} and ¢ € {1, 2} suc

yo(n{) s w(njh) + I w(ni) “

. al%‘oli‘ fpl\iN define éﬁ, : N — FEby _y%,(’n,{.) = w(n{.),l.for |1k (7)1“, i, E a’,rivd’
and ys(n) = y,(n) in rest. It follows lim ||yx(n)| = lim |y,

i Dll=0, for k=1,2,...,p, an ¥

”—ypfl?jk()%) j(g&)@gll <3 in rest, showing that d(ys, ?(E))k——sl aznd .yppe
€ Pogpla). Since Jysln) — gl | = | a(n) | > 0, for k=12, .. 1,

it fol that y» # 9, N 3
" fon%‘i‘;fally, lé;pm € l&(R"‘)\O(R"‘). If the se1E J(X :)){”(r)bfe(lj( n)l)lwév?li%h Ell? 13&};
is infini hen there exists a subsequencem o(ny i G
}irm;ﬁm]fee, 11\37 eFOT AT deﬁrke )?/1_2 & ?(ﬁae ?g’rlgg(lgkzlg) ?E)ﬁk)t,h(f O(Iieﬁni_
n) = y,(n) in rest (s % ]
fion of ) Then T yatn) = M goim) o . Tonlim) — o) | o= 0 Tor
ion JO . - CO H—CO il = (n) ” < 8 iIl rest, Sho_
k=1,2,...,p, and [ys(n) — a(n)|| = [|y,(n) = « < Y

ing that d(yy, o(E™) = 5 and g ¢ Puzm(@). Ao [lya(ns) — yo(ns
\11118g> 0, for %’: 1,2, ..., p, showing that y, # v,. Bt
- SuI’Jpose now that the set A = {nelN: |z(n) — &g s>11(?}}; ﬁlat ite.
, ¢ c(R™) it follows that there exist e, .0 <r €5 < ¢ A it
Since 2 N:ey <|a(n) — E|| < 8} ig algo infinite. Therefore, 8e 'efo; b
it G o Gl v = Sl e 6
i g H — p\Ny) = 2] )
’ e1N.2 Defln; ral;?::g, ;1;(;%%1)9 ilgé(% in rest. It follows that lim y,(n) =
et C IO O 2 :

; FihE ik L ",‘,-'_9° - and
= lim '!/o('”) = 27 ”yp('nh‘) = w(nk)” T 07 for k e ‘1’-2’(-_- 7__171_“ ’;ﬂ _
ly 7‘(-';:; — a(n) || = llge{n) — a(n)| < 9, in rest, showing that d(ys, c(R™)).=

b4

10. —s On the best net and the best cross-secant of a sef in

11, —, On the relatipe Chebyshev center of a compact set of conlinuons funciicns, M
12, Lan, K. S.,

13. Olech, C., Approzimation of set
14. Roversi Marconi, M, S., Best approzimatio
15. Singer, 1., Best approximation in normed linear s

16. — The theory of best @pproximation and functional analysis,

17, Whitley,
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= 3 and Yo Lormy € (). Taking into account formula (12) we obtain
195(m) = B = o) — €] > ¢, =0, Showine B U # gy

2° Althoygh, Co 18 0 proximinal subspace of 1 there
linear projections of I® onio ¢, (see [17]), L.e. the metric
P, 112 2% aqdmits no continuous Wnear selection,

3° In the case E — R the Jormulae a)
the Jollowing form :

COROLLARY 3.1. Iet Gy, Oy €, [
Then, for @ e1° we have :

are no continuous
projeciion operator

y b)y ) from Theorem, 2,1 take
be the corresponding spaces for B — B,

a) d(z, ¢,) = lim sup | o(n) |,

b) d(z, ¢)) = 21 (im sup

2(n)| — limingf [ 2(n)]),
¢) d(z,c) = 21 Hm sup @(n) — lim int a(n)|
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