REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome 23, N° 1, 1994, pp. 63-69

BEST APPROXIMATION IN SPACES OF BOUNDED VECTOR-VALUED SEQUENCES

tope of the world when the property of an extrement that is realistic will be be the second transfer of the second

Ş. COBZAŞ (Cluj – Napoca)

- and remaining the second of the second of

Le X be a normed space and Y a non-void subset of X. For $x \in X$ put $d(x, Y) = \inf \{ ||x - y|| : y \in Y \}$ — the distance from x to Y, and let

$$P_{Y}(x) = \{ y \in Y : \|x - y\| = d(x, Y) \},$$
(1)
$$P_{Y}(x) = \{ y \in Y : \|x - y\| = d(x, Y) \},$$

be the set of the elements of best approximation of x by elements in Y. The set Y is called proximinal if $P_Y(x) = \emptyset$, for all $x \in X$, Chebyshevian if $P_Y(x)$ is a singleton, for all $x \in X$, and antiproximinal if $P_Y(x) = \emptyset$, for all $x \in X \setminus Y$. The term antiproximinal was proposed by M. Edelstein and A. C. Thompson [8]. I. Singer [16] called such set a very non-proximinal set.

If Z is a subspace of X and Y a non-void bounded subset of X then the Chebyshev radius of Y with respect to Z is defined by

(2)
$$\operatorname{rad}(Y, Z) = \inf_{z \in Z} \sup_{y \in Y} ||y - z||$$

An element $z_0 \in Z$ such that $\sup\{\|y-z_0\|: y \in Y\} = \operatorname{rad}(Y, Z)$ is called a Chebyshev center of Y with respect to Z. The (possible void) set of Chebyshev centers of the set Y with respect to Z is denoted by cent (Y, Z). For Z = X we write $\operatorname{rad}(Y)$ instead of $\operatorname{rad}(Y, Z)$ and $\operatorname{cent}(Y)$ instead of $\operatorname{cent}(Y, Z)$. An element of $\operatorname{cent}(Y)$ is called simply a Chebyshev center of Y and $\operatorname{rad}(Y)$ is called the Chebyshev radius of Y. If $z_0 \in \operatorname{cent}(Y, Z)$ then the closed ball with center z_0 and radius rad (Y, Z) is the smallest ball (i.e. a closed ball of minimal radius) with center in Z and containing the set Y.

The aim of this paper is to study the problem of best approximation in the space $l^{\infty}(E)$ of all bounded vector-valued sequences by elements in various subspaces of convergent sequences.

For a Banach space $E \neq \{0\}$ denote by $l^{\infty}(E)$ the Banach space of all bounded sequences $x: N \to E$, $N = \{1, 2, \ldots\}$, equipped with the sup-norm, i.e.

(3)
$$||x|| = \sup \{||x(n)|| : n \in N\},$$
 for $x \in l^{\infty}(E)$.

Let c(E) be the subspace of $l^{\infty}(E)$ formed of all convergent sequences, $c_0(E)$ — the subspace of all sequences converging to $0 \in E$ and let $c_1(E)$ denote the subspace of all sequences $y \in l^{\infty}(E)$ such that there exists the limit $\|y(n)\|$. Because $\lim_{n \to \infty} y(n) = z$ implies $\lim_{n \to \infty} \|y(n)\| = \|z\|$ and $\lim_{n\to\infty} y(n) = 0$ if and only if $\lim_{n\to\infty} ||y(n)|| = 0$, it follows that $c_0(E) \subseteq c(E) \subseteq$ #-+00 $\subseteq c_i(E)$.

Equipped with the induced norms (i.e. the sup-norms), all these subspaces are closed in $l^{\infty}(E)$ and therefore they are Banach spaces too. In the case of scalar sequences, i.e. for E = R or E = C, these spaces are denoted simply by l^{∞} , c, c_0 and c_1 , respectively.

The spaces c_0 and c are relevant in many problems of best approximation. For instance, they contain non-void closed convex bounded antiproximinal bodies (see [8] or [5-7]). Also, there are many papers dealing with best approximation in spaces of bounded or continuous vectorvalued functions (see, e.g. [1], [2], [12], [14]).

The aim of this paper is to prove the proximinality of the subspaces $c_0(E)$, $c_1(E)$ and $c(R^m)$ in $l^{\infty}(E)$, respectively in $l^{\infty}(R^m)$, giving explicit formulae for the distances and for the elements of best approximation. Also we show that these subspaces are not Chebyshev subspaces of $l^{\infty}(E)$, respectively of $l^{\infty}(\mathbb{R}^m)$.

2. MAIN RESULTS

The main results of this paper are contained in the following theorem:

THEOREM 2.1. The subspaces $c_0(E)$ and $c_1(E)$ are proximinal in the Banach space $l^{\infty}(E)$, for an arbitrary Banach space $E \neq \{0\}$. Also, $c(\mathbb{R}^m)$ is proximinal in loo(Rm), for Rm endowed with an arbitrary norm. For an element $x \in l^{\infty}(E)$ (respectively in $l^{\infty}(R^m)$), the distances to these subspaces are given by the following formulae:

- a) $d(x, c_0(E)) = \lim \sup_n ||x(n)||;$
- b) $d(x, c_1(E)) = 2^{-1} (\limsup_{n \to \infty} ||x(n)|| \liminf_{n \to \infty} ||x(n)||);$
- c) $d(x, c(R^m)) = \delta$, where δ is the Chebyshev radius of the set of limit points of the sequence $x = (x(n)) \in l^{\infty}(\mathbb{R}^m)$.

Proof. a). Let $x \in l^{\infty}(E) \setminus c_0(E)$ and let $d = \lim \sup_n ||x(n)||$. Then d > 0 and we will show that $||x - y|| \ge d$, for all $y \in c_0(E)$.

Let $y \in c_0(E)$. By the definition of $\lim \sup$ there exists a subsequence $(x(n_k))$ of (x(n)) such that $\lim ||x(n_k)|| = d$.

Then $\lim \left(\|x(n_k)\| - \|y(n_k)\|\right) = d$, and

 $||x - y|| = \sup \{||x(n) - y(n)|| : n \in \mathbb{N}\} \ge \sup \{||x(n_k)|| - ||y(n_k)|| : k \in \mathbb{N}\} \ge d.$

Now, let $\Gamma = \{n \in N : ||x(n)|| > d\}$ and define $y_0 : N \to E$ by

$$y_0(n) = \begin{cases} \frac{\parallel x(n) \parallel - d}{\parallel x(n) \parallel} \cdot x(n) & \text{for } n \in \Gamma \\ 0 & \text{for } n \in N \setminus \Gamma. \end{cases}$$

We have to show that $y_0 \in c_0(E)$, i.e. $\lim y_0(n) = 0$. Let $\varepsilon > 0$. Then the set $\Gamma_{\varepsilon} = \{n \in N : \|x(n)\| \ge d + \varepsilon\}$ is finite and contained in Γ . It follows that $\|y_0(n)\| = \|\|x(n)\| - d\| < \varepsilon$ for $n \in \Gamma \setminus \Gamma_\varepsilon$ and $y_0(n) = 0$ in rest, implying $\lim y_0(n) = 0$.

Also, $||x(n) - y_0(n)|| = d$, for $n \in \Gamma$, and $||x(n) - y_0(n)|| = d$ $\|x(n)\| \le d$, for $n \in \mathbb{N} \setminus \Gamma$, implying $\|x - y_0\| \le d$. As $\|x - y\| \ge d$, for all $y \in c_0(E)$, it follows $||x - y_0|| = d = d(x, c_0(E))$, i.e. $y_0 \in P_{c_0(E)}(x)$.

Since $P_{c_0(E)}(x) = \{x\}$, for all $x \in c_0(E)$, it follows that $c_0(E)$ is a proximinal subspace of $l^{\infty}(E)$ and the distance from an element $x \in l^{\infty}(E)$ to $c_0(E)$ is given by the formula a).

b). Consider now the subspace $c_1(E)$ of $l^{\infty}(E)$ and let $x \in l^{\infty}(E) \setminus c_1(E)$. Put $\delta_1 = \lim_{n \to \infty} \inf_n \|x(n)\|$, $\delta_2 = \lim_{n \to \infty} \sup_n \|x(n)\|$, $\xi = 2^{-1}(\delta_1 + \delta_2)$ and $\delta = 2^{-1}(\delta_2 - \delta_1)$. Then $\delta = \xi - \delta_1 = \delta_2 - \xi$.

First, we show that $||x-y|| \le \delta$, for all $y \in c_1(E)$. Let $y \in c_1(E)$ and let $\lambda = \lim \|y(n)\|$. As $x \notin c_1(E)$ it follows $0 \leqslant \delta_1 < \delta_2$, $\xi > 0$ and $\delta > 0$. By the definitions of lim inf and lim sup there exist two strictly increasing sequences (n_k^i) of natural numbers such that $\lim \|x(n_k^i)\| = \delta_i$, i = 1, 2.

 $\geq \lambda - \delta_1 \geq \xi - \delta_1 = \delta$.

 $\begin{array}{l} \text{If } \lambda \leqslant \xi \text{ then lim } (\|x(n_k^2)\| - \|y(n_k^2)\|) = \delta_2 - \lambda \text{ and } \|x - y\| \geqslant \\ \geqslant \sup \left\{ \|x(n_k^2)\| - \|y(n_k^2)\| : k \in N \right\} \geqslant \delta_2 - \lambda \geqslant \delta_2 - \xi = \delta. \end{array}$

Now, we intend to define an element $y_0 \in c_1(E)$ such that $||x - y_0|| =$ $=\delta$, which will imply $y_0 \in P_{c_1(E)}(x)$ and $d(x, c_1(E)) = \delta$. To this end we have to consider several cases.

Consider the set $\Lambda_1 = \{n \in N : 0 < \|x(n)\| < \delta_1\}$ and $\Lambda_2 = \{n \in N : \|x(n)\| > \delta_2\}$. If Λ_1 is infinite then writing it as $\{n_k^1 : k \in N\}$, with $\{n_k^1\}$ strictly increasing, it follows $\lim \|x(n_k^1)\| = \delta_1$. Similarly, if $\Lambda_2 = \{n_k^2 : k \in$ $\{ \in N \}$ is infinite then $\lim \|x(n_k^n)\| = \delta_2$.

Let $\delta_1 > 0$. If both of the sets Λ_1 and Λ_2 are infinite then define $y_0: N \to E$ by

(5)
$$y_0(n_k^i) = x(n_k^i) + \frac{\xi - \delta_i}{x(n_k^i)} \cdot x(n_k^i),$$

for $k \in \mathbb{N}$ and i = 1,2. În rest define y_0 by

(6)
$$y_0(n) = \begin{cases} \frac{\xi}{\|x(n)\|} \cdot x(n) & \text{for } \delta_1 \leqslant \|x(n)\| \leqslant \delta_2, \\ x(n) & \text{for } x(n) = 0. \end{cases}$$

If Λ_2 is infinite and Λ_1 is finite, then define $y_0(n_k^2)$ by (5) and

(7)
$$y_0(n) = \begin{cases} \frac{\xi}{\|x(n)\|} \cdot x(n) & \text{for } \delta_1 \leqslant \|x(n)\| \leqslant \delta_2 \\ x(n) & \text{for } \|x(n)\| < \delta_1 \end{cases}$$

If Λ_1 is infinite and Λ_2 is finite then define $y_0(n_k^1)$ by (5) and

(8)
$$y_0(n) = \begin{cases} \frac{\xi}{\|x(n)\|} \cdot x(n) & \text{for } \delta_1 \leqslant \|x(n)\| \leqslant \delta_2, \\ x(n) & \text{for } \delta_1 < \|x(n)\| \text{ or } x(n) = 0 \end{cases}$$

In this case the set $\{n \in N : x(n) = 0\}$ is also finite because $\delta_1 > 0$. If both of the sets Λ_1 and Λ_2 are finite, then there exists a strictly increasing sequence (n_k^3) of natural numbers such that $\lim ||x(n_k^3)|| = \delta_3$ and $\xi < ||x(n_k^3)|| \le \delta_2$, for all $k \in \mathbb{N}$. In this case define $y_0(n_k^3)$ by (5) (with n_k^3 instead of n_k^i and δ_2 instead of δ_i), and

$$(9) \qquad y_0(n) = \begin{cases} \frac{\xi}{\parallel x(n) \parallel} \cdot x(n) & \text{for} \quad \delta_1 \leqslant \parallel x(n) \parallel \leqslant \delta_2, \ n \in N \setminus \Lambda_3 \\ x(n) & \text{for} \quad \parallel x(n) \parallel < \delta_1 \text{ or } \parallel x(n) \parallel > \delta_2, \end{cases}$$
where $\Lambda_n = \{n_n^3 : k \in N\}.$

where $\Lambda_{3} = \{n_{k}^{3} : k \in N\}.$

instead of δ_i) and

In the case $\delta_1 = 0$ and Λ_2 infinite define $y_0(n_k^2)$ by (5) and

$$y_0(n) = \begin{cases} \frac{\xi}{\parallel x(n) \parallel} \cdot x(n) & \text{for} \quad 0 < \parallel x(n) \parallel \leqslant \delta_2, \\ z & \text{for} \quad x(n) = 0, \end{cases}$$

where $z \in E$ is such that $||z|| = \xi$ (such an element exists because we have supposed $E \neq \{0\}$).

Finally, if $\delta_1 = 0$ and Λ_2 is finite then there exists a subsequence $(x(n_k^4))$ of (x(n)) such that $\lim \|x(n_k^4)\| = \delta_2$ and $\xi < \|x(n_k^4)\| \le \delta_2$, for all $k \in \mathbb{N}$. In this case define $y_0(n_k^4)$ by (5) (with n_k^4 instead of n_k^i and δ_2

 $(11) \quad y_0(n) = \begin{cases} \frac{\xi}{\|x(n)\|} \cdot x(n) & \text{for} \quad 0 < \|x(n)\| \leqslant \delta_2, & n \in \mathbb{N} \setminus \Lambda_4, \\ x(n) & \text{for} \quad \|x(n)\| > \delta_2, \\ z & \text{for} \quad x(n) = 0 \end{cases}$

where $\Lambda_4 = \{n_k^4 : k \in N\}$ and $z \in E$ is again such that $||z|| = \xi$.

Then $\lim_{\substack{k \to \infty \\ \xi}} \|y_0(n_k^j)\| = \lim_{\substack{k \to \infty}} \|x(n_k^j)\| + \xi - \delta_i| = \xi, \quad j = 1, 2, 3, 4,$

and $y_0(n) = \frac{\xi}{1-x^2} \cdot x(n)$ implies $||y_0(n)|| = \xi$. Also if $y_0(n) = z$ we have

 $||y_0(n)|| = ||z|| = \xi$. It follows that in all of the considered cases $\lim ||y_0(n)||$ $= \xi$, i.e. $y_0 \in c_1(E)$.

Also $||y_0(n_k^j) - x(n_k^j)|| = |\xi - \delta_i| = \delta$ if $y_0(n_k^j)$ is defined by (5). If $y_0(n) = \frac{\xi}{\|x(n)\|} \cdot x(n)$ then $\|x(n) - y_0(n)\| = \|\xi - \|x(n)\|\| \le \delta$. In

the case $\delta_1 = 0$ and x(n) = 0 we have $y_0(n) = z$ and $||x(n) - y_0(n)|| = z$ $=\xi=\delta$.

It follows that in all of the considered cases $||x-y_0|| \le \delta$ and, taking into account the fact that $||x-y|| \ge \delta$ for all $y \in c_1(E)$, it follows $||x - y_0|| = \delta = d(x, c_1(E)) \text{ and } y_0 \in P_{c_1(E)}(x).$

Since $P_{c_1(E)}(x) = \{x\}$, for all $x \in c_1(E)$, it follows that $c_1(E)$ is a proximinal subspace of $l^{\infty}(E)$ and the distance from $x \in l^{\infty}(E)$ to $c_1(E)$ is gi-

c) Let $E=R^m$ be endowed with an arbitrary norm or, equivalently, let E be an m-dimensional Banach space. For $x \in l^{\infty}(\mathbb{R}^m)$ $c(\mathbb{R}^m)$ denote by A_x the set of all limit points of the sequence (x(n)), i.e. $\lambda \in A_x$ if and only if there exists a subsequence $(x(n_k))_{k>1}$ of (x(n)) converging to λ . Because (x(n)) is a bounded sequence in \mathbb{R}^m it follows that $A_x \neq \emptyset$. Let ξ be a Chebyshev center of the set A_x and δ its Chebyshev radius. As $x \notin c(\mathbb{R}^m)$ there follows $\delta > 0$. A. L. Garkavi [9] proved that if E is a conjugate Banach space, then every non-void bounded subset of E has a Chebyshev center. In particular this is true for the reflexive Banach space R^m .

Again, we shall show first that $||x-y|| \le \delta$, for all $y \in c(\mathbb{R}^m)$. For $y \in c(R^m)$ denote $\eta = \lim y(n) \in R^m$ and suppose that there exists $\varepsilon, 0 < \varepsilon < \infty$ $<\delta$ such that $\|x-y\|=\delta-\varepsilon$. Choose $n_0\in N$ such that $\|y(n)-\eta\|<$

$$< \varepsilon/2, \text{ for all } n \ge n_0. \text{ It follows}$$

$$||x(n) - \eta|| \le x(n) - y(n) || + ||y(n) - \eta|| < \delta - \varepsilon + \frac{\varepsilon}{2} = \delta - \frac{\varepsilon}{2}.$$

for all $n \leq n_0$. This inequality implies that the set A_x is contained in the closed ball of center η and radius $\delta - \varepsilon/2$, in contradiction to the hypothesis that its Chebyshev radius is δ . Therefore $||x-y|| \ge \delta$.

Now, define the sequence $y_0: N \to R^m$ by

(12)
$$y_0(n) = \begin{cases} x(n) - \frac{\delta}{\|x(n) - \xi\|} \cdot (x(n) - \xi) & \text{for } \|x(n) - \xi\| > \delta, \\ \xi & \text{for } \|x(n) - \xi\| \leq \delta. \end{cases}$$
We have to show that

We have to show that $y_0 \in c(\mathbb{R}^m)$. For every $\varepsilon > 0$ the set $\{n \in N : ||x(n) - \xi|| \ge \delta + \varepsilon\}$ is finite, for if contrary, the sequence (x(n))would have a limit point $\lambda \in A_x$ verifying $\|\lambda - \xi\| \ge \delta + \varepsilon$ in contradiction to the hypothesis that ξ is a Chebyshev center of A_x and δ its Chebys-

$$\|y(n)-\xi\|=\|x(n)-\xi\|-\delta\|$$

excepting a finite set of natural numbers n, so that $\lim y_0(n) = \xi$, implying that $y_0 \in c(\mathbb{R}^m)$.

Also, $||x(n) - y_0(n)|| = \delta$ in the first case of the formula (12) and $\|x(n)-y_0(n)\|=\|x(n)-\xi\|\leqslant \delta,$ in the second one. Therefore $||x-y_0|| \le \delta$ and, since $||x-y|| \ge \delta$ for all $y \in c(\mathbb{R}^m)$, it follows that $||x-y_0||=\delta=d(x,c(R^m)) \text{ and } y_0\in P_{c(R^m)}(x).$

Again, for $x \in c(E^m)$ we have $P_{c(R^m)}(x) = \{x\}$, proving the proximinality of the subspace $c(R^m)$ in $l^{\infty}(R^m)$ and the validity of the for-

3. REMARKS draw (at present of perform more ingression tasks horse

1° We have shown that the spaces $c_0(E)$, $c_1(E)$ and $c(R^m)$ are proximinal in $l^{\infty}(E)$, respectively in $l^{\infty}(R^m)$. Now we shall show that no one of these subspaces is a Chebyshev subspace.

Consider first the case of the space $c_0(E)$. For $x \in l^{\infty}(E) \setminus c_0(E)$, we have $d = \limsup ||x(n)|| > 0$, so that there exists a subsequence $(x(n_k))$ of (x(n)) such that $\lim ||x(n_k)|| = d$ and, $||x(n_k)|| > 0$, for all $k \in N$. Now for $p \in N$ define $y_p : N \to E$ by $y_p(n_k) = x(n_k), k = 1, 2, \ldots, p$, and $y_p(n) = y_0(n)$ in rest. Then, for $1 \le k \le p$, $||y_p(n_k) - y_0(n_k)|| = d > 0$ if $y_0(n_k) = \frac{\|x(n_k\| - d) \cdot x(n_k)\|}{\|x(n_k)\|} \cdot x(n_k)$ and $\|y_p(n_k) - y_0(n_k)\| = \|y_n(n_k)\| = \|x(n_k)\| > 0$ if $y_0(n_k) = 0$ (see formula (4) for the definition of y_0). It follows that $y_p \in c_0(E), \ y_p \neq y_0 \ \text{and} \ \|x - y_p\| = d = d(x, c_0(E)), \text{ showing that } y_0$ $y_p \in \bar{P}_{c_p(E)}(x)$.

Now let $x \in l^{\infty}(E) \setminus c_i(E)$ and let $\Lambda_i = \{n_k^j : k \in N\}, j = 1, 2, 3, 4$ be the sets of the strictly increasing sequences of natural numbers, considered in the proof of the point b) of Theorem 2.1. Then, in all of the considered cases, there exist $j \in \{1, 2, 3, 4\}$ and $i \in \{1, 2\}$ such that

$$y_0(n_k^j) = x(n_k^j) + \frac{\xi - \delta_i}{\|x(n_k^j)\|} \cdot x(n_k^j),$$

for all $k \in \mathbb{N}$.

For $p \in N$ define $y_p: N \to E$ by $y_p(n_k^j) = x(n_k^j)$, for $k = 1, 2, \ldots, p$, and $y_p(n) = y_0(n)$ in rest. It follows $\lim \|y_p(n)\| = \lim \|y_0(n)\| = \xi$ and $\|y_p(n_k^j) - x(n_k^j)\| = 0$, for $k = 1, 2, \ldots, p$, and $\|y_p(n) - x(n)\| = 0$ $= \|y_0(n) - x(n)\| \le \delta$ in rest, showing that $d(y_p, c_1(E)) = \delta$ and $y_p \in$ $y_{n}(x) \in P_{c_1(E)}(x)$. Since $||y_n(n_k^j) - y_0(n_k^j)|| = ||x(n_k^j)|| > 0$, for $k = 1, 2, \ldots, p$, it follows that $y_p \neq y_0$.

Finally, let $x \in l^{\infty}(\mathbb{R}^m) \setminus c(\mathbb{R}^m)$. If the set $\Lambda = \{n \in \mathbb{N} : ||x(n) - \xi|| > \delta\}$ is infinite, then there exists a subsequence $(x(n_k))$ of (x(n)) with $n_k \in \Lambda$, for all $k \in N$. For $p \in N$ define $y_p : \hat{N} \to R^m$ by $y_p(n_k) = x(n_k)$, for k = 1 $=1,2,\ldots,p,$ and $y_p(n)=y_0(n)$ in rest (see formula (12) for the definition of y_0 . Then $\lim_{n \to \infty} y_n(n) = \lim_{n \to \infty} y_0(n) = \xi$, $||y_n(n_k) - x(n_k)|| = 0$, for $k = 1, 2, \ldots, p, \text{ and } ||y_p(n) - x(n)|| = ||y_0(n) - x(n)|| \le \delta \text{ in rest, sho-}$ wing that $d(y_p, c(\mathbb{R}^m)) = \delta$ and $y_p \in P_{c(\mathbb{R}^m)}(x)$. Also $||y_p(n_k) - y_0(n_k)|| =$ $=\delta > 0$, for $k=1,2,\ldots,p$, showing that $y_p \neq y_0$.

Suppose now that the set $\Lambda = \{n \in \mathbb{N} : ||x(n) - \xi|| > \delta\}$ is finite. Since $x \notin c(\mathbb{R}^m)$ it follows that there exist ε_0 , $0 < \varepsilon_0 < \delta$ such that the set $\{n \in N : \varepsilon_0 < ||x(n) - \xi|| \le \delta\}$ is also infinite. Therefore, there exists a subsequence $(x(n_k))$ of (x(n)) verifying $\varepsilon_0 < ||x(n_k) - \xi|| \le \delta$, for all $k \in \mathbb{N}$. Define now, for $p \in \mathbb{N}$, $y_p : \mathbb{N} \to \mathbb{R}^m$ by $y_p(n_k) = x(n_k)$, for k = 1 $=1,2,\ldots,p$ and $y_p(n)=y_0(n)$ in rest. It follows that $\lim y_p(n)=$ $=\lim_{n\to\infty} y_0(n) = \xi, \ \|y_x(n_k) - x(n_k)\| = 0, \quad \text{for} \quad k = 1, 2, \dots, p,$ and $||y_p(n) - x(n)|| = ||y_p(n) - x(n)|| \le \delta$, in rest, showing that $d(y_p, c(\mathbb{R}^m)) =$

= δ and $y_p P_{c(R^m)} \in (x)$. Taking into account formula (12) we obtain $||y_p(n_k) - y_0(n_k)|| = ||x(n_k) - \xi|| > \varepsilon_0 > 0$, showing that $y_p \neq y_0$.

2° Although, co is a proximinal subspace of lo there are no continuous linear projections of l^{∞} onto c_0 (see [17]), i.e. the metric projection operator $P_{c_0}: l^{\infty} \rightarrow 2^{c_0}$ admits no continuous linear selection.

 3° In the case E=R the formulae a), b), c) from Theorem 2,1 take the following form:

Corollary 3.1. Let c_0 , c_1 , c, l^{∞} be the corresponding spaces for E = R. Then, for $x \in l^{\infty}$ we have:

- a) $d(x, e_0) = \limsup |x(n)|$,
- b) $d(x, c_1) = 2^{-1} (\lim \sup |x(n)| \lim \inf |x(n)|),$
- c) $d(x, c) = 2^{-1}$ |lim sup $x(n) \lim_{n \to \infty} \inf |x(n)|$

REFERENCES

1. Amir, D. and Deutsch, F., Approximation by certain subspaces in the Banach space of centinuous vector valued function, J. Approx. Theory, 27 (1979), 254-270.

2. Buck, R. C., Approximation properties of vector valued functions, Pacific. J. Math., 53

3. Chiacchio, A. O., Best approximation by elements of vector subspaces of $C_b(X, E)$, Preprint No. 312, Univ. Estadual de Campinas — Sao Paulo, Brasil (1985), 8 pp.

-, Chebyshev centers in space of vector-valued continuous functions, Ibid. Preprint No. 313 (1985), 12 pp.

5. Cohzas, S., Antiproximinal sets in some Banach spaces, Mathematica Balkanica & (1974),

-, Convex antiproximinal sets in the spaces co and c, Mat. Zametki (Moscow) 17 (1975), 449-457 (in Russian).

7. Cobzas, S., Antiproximinal sets in Banach spaces of co-type, Revue d'Analyse Nun érique et de Théorie de l'Approximation, 7 (1976), 141-145.

8. Edelstein, M. and Thompson, A. C., Some results on nearest points and support properties of convex sets in co, Pacific J. Math., 40 (1972), 553-560. 9. Garkavi, A. L., On the existence of the best net in a Banach space, Uspekhi Mat. Nauk,

-, On the best net and the best cross-secant of a set in a normed space, Izvestija Akad.

Nauk SSSR, Ser. Matem. 26 (1962), 87-100. -, On the relative Chebyshev center of a compact set of continuous functions, Mat. Zametki (Moscow), 4 (1973), 469-478.

12. Lau, K. S., Approximation by continuous vector valued functions, Studia Math., 68 (1980),

13. Olech, C., Approximation of set-valued functions by continuous functions, Colleg. Math., 18

14. Roversi Marconi, M. S., Best approximation of bounded functions by continuous functions, J. Approx. Theory, 41 (1984), 135-148.

15. Singer, I., Best approximation in normed linear spaces by elements of linear subspaces, Editura Academiei and Springer-Verlag, Bucharest and Berlin-Heidelberg - New York, 1970.

-, The theory of best approximation and functional analysis, CEMS, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pensylvania, USA, 1974

17. Whitley, R., Projecting m onto co, Amer. Math. Monthly, 73 (1866), 285-286.

Received 1 X 1993

Babeş-Bolyai University Department of Mathematics and Informatics Str. M. Kogălniceanu 1, 3400 Cluj-Napoca Romania