and the first of the M. Sawyer's and the control of the said- and the disco ON THE SELECTIONS ASSOCIATED TO THE METRIC PROJECTION The state of the second state seems of the second s

A la la remindra deliberação M. e. Chi. A ex M. rel desir Ojesso anço of Address a minimum salpha balking and property of the contragation

COSTICĂ MUSTĂŢA (Cluj-Napoca)

1. INTRODUCTION

With the second of the second Let X be a real normed space and M a closed subspace of X. The distance from a point $x \in X$ to M is defined by

(1)
$$d(x, M) := \inf\{\|x - y\| : y \in M\}.$$

(2)
$$P_{\mathcal{M}}(x) := \{ y \in M : ||x - y|| = d(x, M) \}$$

be the set of elements of best approximation for x in M. The subspace Mis called proximinal (Chebyshevian) if $P_{M}(x) \neq \emptyset$ (respectively $P_{M}(x)$ is a singleton), for all $x \in X$. If M is a proximinal subspace of X, the multivalued operator $P_M: X \to 2^M$ is called the metric projection of X onto M.

An application p: X - M such that $p(x) \in P_M(x)$, for all $x \in X$, is called a selection for P_M .

The set

(3)
$$\operatorname{Ker} P_{M} := \{x \in X : \theta \in P_{M}(x)\}$$

is called the kernel of the metric projection.

If K is a subset of X and M is proximinal (Chebyshevian) only for the elements of K, then the subspace M is called K-proximinal (respectively K-Chebyshevian).

The restriction of the metric projection P_{M} to K is denoted by $P_{M/K}$ and

(4)
$$\operatorname{Ker} P_{M/K} := \{x \in K : \theta \in P_{M}(x)\}$$

is called the kernel of the metric projection relative to K.

For two subsets U, V of X, their sum is defined by U + V := $=\{u+v:u\in U,v\in V\}$. If every $x\in U+V$ can be uniquely written in the form x=u+v, for $u\in U$ and $v\in V$, then this sum is called the algebraic direct sum of the sets U and V and is denoted by U+V. If K= $=U\dotplus V$ and the application (u,v) o u+v is a topological homeomorphism between $U \times V$ and K, then K is called the topological direct sum of the set U and V and is denoted by $K = U \oplus V$.

+ 3

MAIN THIE OR TEN

Obviously that for $K \subset X$ and a K-proximinal subspace M of X, the properties of the selection associated to the metric projection $P_{M/K}$ depend, on one side, on the properties of the subspace M and on the other side, on the properties of the set K.

F. Deutsch [1] characterized the proximinal subspace M of X for which the metric projection $P_{\scriptscriptstyle M}$ admits a linear and continuous selection : namely, $P_{\scriptscriptstyle M}$ admits a continuous linear selection if and only if Ker $P_{\scriptscriptstyle M}$ contains a closed subspace complementary to M (see [1], Theorem 2.2).

The aim of this paper is to answer the following question: For a closed cone K in X and a K-proximinal subspace M of X when does the metric projection $P_{M/K}$ admit a continuous, additive and positively homogeneous selection?

A cone is a nonvoid subset K of X such that: a) $x + y \in K$, for all $x, y \in K_i$; b) $\lambda x \in K$, for all $\lambda \ge 0$ and $x \in K$.

A partial answer to this question is suggested by the above quoted result of F. Deutsch and is given in the following:

THEOREM A. Let K be a closed cone in X and M a K-proximinal subspace of X. If the subspace M contains a closed cone U and $\operatorname{Ker} P_{M/K}$ contains a closed cone C such that

$$\overset{(5)}{then} \ P \quad \text{admits a finite of } K = U \oplus C,$$

then $P_{M/K}$ admits a positively homogeneous, additive and continuous selec-

Proof. Let U be a closed cone in M and C a closed cone in $\operatorname{Ker} P_{M/K}$ such that $K = U \oplus C$.

Then, for $h \in K$, there exist uniquely determined elements $u_h \in U$ and $c_h \in C$ such that $h = u_h + c_h$.

Define the application $q: K \to M$ by

$$q(h) = u_h, \quad h \in \mathcal{K}.$$

Since K is homeomorph to $U \times C$ it follows that the application qis continuous.

Let $h_1, h_2 \in K$ and $u_{h_1}, u_{h_2} \in U$ and $c_{h_1}, c_{h_2} \in C$ be such that $h_1 =$ $=u_{h_1}+c_{h_2}, h_2=u_{h_2}+c_{h_2}.$ Then

$$q(h_1 + h_2) = u_{h_1} + u_{h_2} = q(h_1) + q(h_2),$$

showing that the application q is additive.

Also, for $\lambda \geqslant 0$ and $h \in K$ it follows $\lambda h \in K$ and

$$q(\lambda h) = \lambda u_h = \lambda q(h),$$

showing that q is positively homogeneous.

ing that q is positively homogeneous.

The inclusion $C \subseteq \operatorname{Ker} P_{M/K}$ implies that for $h \in K$, $h = u_h + c_{h'}$, $U, c_h \in C$, we have $u_h = q(h) = q(u_h + c_h) = q(u_h) + q(c_h) = q(u_h)$ $u_h \in U, c_h \in C$, we have

$$u_h = q(h) = q(u_h + c_h) = q(u_h) + q(c_h) = q(u_h)$$

and therefore the sale ball smaller in universal and it is some

$$\|h-q(h)\|=\|u_h+c_h-u_h\|=\|c_h\|=d(c_h,M).$$
 But

But

$$d(u'+c_h,M)=d(c_h,M),$$
 for every $u'\in M,$ so that

for every $u' \in M$, so that

$$||h - q(h)|| = d(c_h, M) = d(u_h + c_h, M) = d(h, M),$$

which shows that q(h) is a best approximation element for h in M.

In conclusion, the application $q:K\to M$ is an additive, positively homogeneous and continuous selection of $P_{M/K}$ Traffig II be now man individual in a II , though

APPLICATIONS

 $V_{2,1} = V_{1,1} V_{1,2} V_{1,1} = V_{1,2} V_{2,1} = V_{1,2} V_{2,2}$ 1° Let $X := \text{Lip}_{\mathfrak{o}}[0,1]$ be the linear space

(6) $\text{Lip}_0[0,1] := \{f | f : [0,1] \to \mathbb{R}, f \text{ is Lipschitz on } [0,1] \text{ and } f(0) = 0\}$ = 0}, with the Lipschitz norm

(7)
$$||f||_{L} := \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y \right\}.$$
 Let

(8)
$$M := \{g \in \text{Lip}_0[0, 1] : g(1) = g(0) = 0\}$$

and

(9)
$$K := \{ f \in \text{Lip}_0[0,1] : f(x) \ge 0, \text{ for all } x \in [0,1] \}.$$

Obviously that M is a K-proximinal closed subspace of $\operatorname{Lip}_0[0,1]$ if $f \in K$ then $g_0 \in M$ is an element of best approximation for f if and only if $g_0 = f - F$, where F(x) = f(1)x, $x \in [0, 1]$ ([4], Lemma 1).

In fact $g_0 = f - F$, with F given above, is a unique element of best approximation for f in M, which means that M is a K-Chebyshevian subspace of $\text{Lip}_0[0, 1]$. When return the Wisser or many artists in the

We have

$$||f - g_{\bullet}||_{L} = d(f, M) = \inf\{||f - g||_{L} : g \in M\} = f(1)$$

and

$$\operatorname{Ker} P_{M/K} = \{ f \in K : ||f||_L = f(1) \} =$$

$$= \{ h \in K : h(x) = \alpha x, x \in [0, 1], \alpha \ge 0 \}$$

In this case

$$C = \operatorname{Ker} P_{M/K}$$

and every function $f \in K$ can be uniquely written in the form f = g + hwith $g \in U$ and $h \in C$, where h(x) = f(1)x, $x \in [0, 1]$ and

$$U = \{g \mid g(x) = f(x) - f(1)x, \ x \in [0, 1], \ f \in K\},\$$

$$C = \{h \mid h(x) = f(1)x, \ x \in [0, 1], \ f \in K\}.$$

Since M is K-Chebyshevian it follows that the metric projection operator $P_{M/K}$ is one-valued, continuous, additive and positively homo-

2° For $x_0 \in (0,1)$ fixed, consider the linear space

(10) $X := \operatorname{Lip}_{x_0}[0,1] = \{f/f : [0,1] \to \mathbb{R}, \text{ f is Lipschitz on } [0,1] \text{ and }$ $f(x_0)=0$, with the Lipschitz norm (7). Let

(11)
$$M := \{g \in \text{Lip}_{x_0}[0,1] : g(0) = g(x_0) = g(1) = 0\},$$

the annihilator in $\operatorname{Lip}_{x_0}[0,1]$ of the set $\{0,\,x_0,\,1\}$, and

(12)
$$K := \{ f \in \text{Lip}_{x_0}[0, 1] : f(x) \ge 0, \text{ for all } x \in [0, 1] \}.$$

Again, M is a K-proximinal subspace of $\text{Lip}_{x_0}[0,1]$. Indeed, for $f \in K$ let

(13)
$$E(f) = \{ F \in \text{Lip}_{x_0}[0, 1] : F|_{\{0, x_0, 1\}} = f|_{\{0, x_0, 1\}} \text{ and }$$

$$\|F\|_L = \max \left\{ \frac{f(0)}{x_0}, \frac{f(1)}{1 - x_0} \right\}$$

be the set of the extensions to [0, 1] of the function $f|_{\{0, x_0, 1\}}$ which preserve the Lipschitz norm of f on $\{0, x_0, 1\}$. Then

(14)
$$P_{M/K}(f) = f - E(f)$$
 and

$$\operatorname{Ker} P_{M/K} = \left\{ f \in K : \|f\|_{L} = \max \left\{ \frac{f(0)}{x_0}, \frac{f(1)}{1 - x_0} \right\} \right\}$$

(see [4], Lemma 1).

In this case the cone $C \subset \operatorname{Ker} P_{M/K}$ is given by

(15)
$$C := \{ h \in \text{Ker } P_{M/K} : h(x) = \alpha(x - x_0), \text{ for } x \in [0, x_0] \}$$

and
$$h(x) = \beta(x - x_0), \text{ for } x \in (x_0, 1], \ \alpha \leq 0 \text{ and } \beta \geq 0\}.$$
Then every $f \in X$

Then every $f \in K$ can be uniquely written in the form $f = u_f + c_f$, $u_t \in U$ and $c_t \in C$ where

(16)
$$c_{f}(x) = -\frac{f(0)}{x_{0}} (x - x_{0}), \text{ for } x \in [0, x_{0}]$$

$$= \frac{f(1)}{1 - x_{0}} (x - x_{0}), \text{ for } x \in (x_{0}, 1],$$

and

(17)
$$u_f(x) = f(x) + \frac{f(0)}{x_0} (x - x_0), \text{ for } x \in [0, x_0]$$
$$= f(x) - \frac{f(1)}{1 - x_0} (x - x_0), \text{ for } x \in [x_0, 1].$$

In fact

$$U:=\{u_f\in M\,|\, u_f ext{ defined by (17)},\, f\in K\} ext{ and }$$
 $C:=\{e_f\in K\,|\, e_f ext{ defined by (16)},\, f\in K\}.$

A continuous, additive and positively homogeneous selection for $P_{M/K}$ is given by $q(f) = u_f$, $f \in K$, a fact which can be immediately verified. Remarks. Theorem A gives only a sufficient condition for the existence of an additive, positively homogeneous and continuous selection

Simple examples show that this condition is not necessary for the existence of a selection with the above-mentioned properties.

Let $X = \mathbb{R}^2$ endowed with the Euclidean norm and let

$$K := \{(x, y) \in \mathbb{R}^2 : y = 2x, \ x \geqslant 0\}$$

and

$$M:=\{(x,0):x\in\mathbb{R}\}.$$

Then, obviously, the subspace M is K-Chebyshevian and Ker $P_{M/K} = \{(0, 0)\}.$

In this case $P_{M/K}$ is a continuous, positively homogeneous and additive application from K to M, but K does not admit any decomposition

REFERENCES

- 1. Deutsch, F., Linear Selections for the Metric Projection, J. Funct. Analysis 49 (1982) 269-292. 2. Deutsch, F., Wu Li, Sung-Ho Park, Tietze Extensions and Continuous Selections for Metric
- 3. Mustăța, C., Selections Associated to the Mc Shane's Extension Theorem for Lipschilz Functions, Revue d'Anal. Numér et de Théorie de l'Approx. 21 (2) (1992) 135-145.
- 4. Mustăța, C., Best Approximation and Unique Extension of Lipschitz Functions, J.A.T. 19
- 5. Mustăla, C., A Characterization of Chebyshevian Subspace of Y1 type, Mathematica Revue d'Analyse Numer, et de Théorie de l'Approx., 6 (1) (1977) 51-56.
- 6. Singer, 1., Best Approximation in Vector Normed Spaces by Elements of Vector Subspaces (in Romanian), Ed. Acad., București, 1967.

Received 8 X 1993

Institutul de Calcul Oficial Postal 1 C. P. 68 3400 Cluj-Napoca România