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1. INTRODUCTION

The fundamental problem to analyse a retarded process from the
real world, to give a description by mathematical model and to determine
the subsequent behaviour leads to delay equations. Such types of equa-
tions appear in many fields of applied sciences such as : physics and engi-
neering, biology, medicine, economics, efc.

In recent years there has been g growing interest in the numerical
{reatment of differential equations with deviating argument. The reader
interested in detailed information is referred to the books [6], [97, [20 ]

We are interested in the numerical solution of initial value problems
for neutral delay differential equations of the following form :

v =1 y(1), ylg®), v'(g(1), tela,b]
(1) y(t) = (1), te (o al, a<a<b.

Lemark. If in addition the condition y'(t) = o'(t), 1€ [q a] 8 impo-
sed as we shall see later, the needed starting values of the resulting multistep
algorithms lave the desired aceuracy automatically.

Suppose that the funetion [ satisfies certain: conditions which gua-
rantee the exigtence and the uniqueness of the solution ¥ of this Pproblem. -
It is assumed that the initial function ¢ 18 continuous together with its
derivatives (smooth enough). _ 7

The equations of this type found applications in many fields such as
control theory, oscillation theory, electrodynamics, biomathematics ‘and
medical sciences. :

These last years some methods have heen proposed for the numeriegl
solutions of neutral delay differential equations and we refer to the survey
papers of Bellen [3], [4], Jackiewicz [11] — [16], Hornung [10]. -

' The idea of using spline functions to approximate the solution of
deviating argument differential equations has been applied in a number
of papers, for instance (7], [18], [23] — [26].

 For variable delay the spline approximation solutions for the neutral
delay ditferential equations, as in the case of usual delay and ordinary diffe-
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rential equations, possess some advantages over other piece-wise polyno-
mial approximation methods. . . o

In this paper we consider a spline approxm_‘:at-mn 311@’(—119:1 for the
neutral delay differential equations. Our purpose is to prove t.-hat:, as for
the usual délay case [24] — [26] some CO]]U(.‘ELtlol;l approach_eﬁ w1t}1 qua-
dratic and cubic splines are equivalent to 11‘apez01da1' and_Mlln?— Slmpis‘on‘
multistep formulae. We shall also investigate the estnnait_'lon of the eﬁ] or
and the convergence of the given yprocedures. The notation used in this
paper ave taken from [15] — [16] and [24] — [26].

2. BDESCRIFTION OF THE SPLINE APPROXIMATING METHOD

Assume that f: [a, b] X C'a, 0] X C*a, b] X Clo,b] — R and
the functional f satisfies the conditions H, and H, below : , '
H,: F¥or any @ e (*[a,b] the mapping 1 - f1, x(t), =(-), x'(*) is con-
tinuous on {a, b]
H,: The Lipschitz condition holds :

£, (1), il )y () — f(L, #a(8)y yal )y 22( D] <
< ]).1( || @y — Lol 1y + N 41 — Yol -8 + o1 — 2o e, 1—8)) -+
+ L7y — 221w 0

with
1,20, 0 < L, <1,3 >0, for any te€ [a, b, @y 2g € Ca, b],

Y1 Yoy %1y 23 € Ol e, ]

1 ast condition means that the dependence of f on y'(s) for ¢ —
— 3 é‘};esl t is not too strong. Here Cf[a, b], ¢ = 0, 1, denotes t:he slg'm-,e
of all functions of class C° from [«,d] into R wﬂl'rh the Imt-ih.tl('}n C [.a.f
b] = C[a, b], and for any z € €[«, b] the gymbol || @ iz ¢ Htﬂ;n(}s for sup{ I|
(s) ]| : 8 € [, t]}. Under the conditions H, and H, problem (1) _.1ff.s a un;luc
solution y € O'[a, b] n Cle, b] (see [17], [156]). Suppose a.llst **h‘?"*i ge :t[oc,
b], « < glt)y<t, tela,b], and ¢ € ("1, ¢], where m>1 is a given natu-

ral number. . . . i3
For the qualitative behaviour of the solution y, in particular the

presence of jump-discontinuities in the higher deriv.atives caused b.y the
deviating function g, known a8 primary discontinuity, the 1‘ead.e.r is 1'?—
terred for example to [3]. Jump-discontinuity occurs in the various deri-
vatives of the solution even if f, g, @ are analytic in their arguments. Such
jump-discontinuities are caused by the deviating g and propz;mgate from
the point a. Denote the jump-discontinuities points by (&), which are the
roots of the equations ¢(&;) = &1, & = a.

Since in this paper ¢ does not depend on y (no sta"oe~dependent de-
viating) we can consider the jump-discontinuities to be known and they
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are disposed in the strictly increasing form :

o <TEp ). wl By i<t I8} < ok,

~We shall construet a spline approximating function s:[a,d] — R
8 € Su(the polynomial spline function space of degree m and class of smo-
othing C»-1), which will be defined on each interval[ &;_,,£,]. For this cons-
ttg:(li(jltiun we shall use successively the collocation method as in {247 —
Let us consider the first interval [ &, &] which is [a, £, divided by

a uniform partition defined by the knots : '

EO :fo<t1< -..1k<tk+1< "'tN: E.'l’
fratigy - jry e B By
N
On the first interval [, t,] the spline component is defined by :
y'(t
ft) s = gltg) + L (¢ gy 4

(2) :Z/M_l((to) a’O

{(m —1)! S

with the last coefficient undetermined and
a1

dr—!

We now determine «, by requiring that s, satisfies the following col-
location condition :

8q(1y) :f(tl? So(th), o(g(ty)), ‘:Pl(g(tl)))

which is to be solved for a,.
Having determined the polynomial (2), on the next interval [7,,
1,] we define :

(t — 1)
m!

LS ¥, y(9(®)s y'(9(1))) Vs,

Yt,) + =

e m—1 ng)(tl) ) a, "
(3) §(1) : = E,O T (t —t) + o] (t —1)

where s{ (1,), 0<j<m — 1 are left hand limits of derivatives as ¢ — iy
of the segment of s defined on [t),1,] and «a, is determined from the follo-
wing collocation condition :

$1(ts) = fltay 81(t3), 84(y(ty)), 8o(g (22)))

Continuing in this manner we obtain a spline function s : [Eo &) —
—[R, 8|, = 8, s € 8 which approximates the solution y of (1) and which
satisfies the collocation equations :

$i(tre1) = (ks 31(1l-+1); 81—1<g(fk+1))7 87-1(9(tk41)))

k=0, N—=1,7 j=0, M
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Tf we consider now the interval [&;, &), (J = 0, M — 1) which is
also divided by a uniform partition with the points :

. et By — &
ty = 1o -+ khy k=0, N, ty: = &5 ly = &rpny B2 i

and if we denote by s, s € Si the spline function approximating the solu-
tion of (1), then on the interval [, tk.] 8 18 defined by
m—1 S([)(th) ) t ) nhy
c= 8 g ) ——— (L —
(4) e ,Zflo 1! ( Pt m ! ( "
0 <i<m — 1 are left-haud limits of the derivatives of the

where s® (ir), _ N
defined on [tr_y, ¢r] and the parameter ay is determined such

segment of s
that :
si(tiry) = f{lerss $i(tips)y  Si—a(g(tien))y Sica(g(lren)))s
(5) i
=0, M, k=0, N —1, 85: =8|y

Thig procedure yields a spline function s e S over the entire i.n.ter-
val | %5, £y, with the knots {tx}f,. Tt remains to show that for h ‘sufflclen—
1y small the parameter g, 0 <k <N can be uniquely determined from (5).

T mumormM 1. If f satisfies the assumptions Hy, Iy, ¢ € om-1, a<g(?) <If,

t e o, 0] and if his small enough, then there exists « u-?w',que spline approwi-
mating solution of the neutral delay differential equation problem (1) given
by the above construciion. '

Proof. Tt remains to be proved that ax can be uniquely determined
from (5). Replacing s given by (4) in (5) we have

m— 1)1 @ "
ap = L-)_{f(th-lv Ak(tl\?+1) -+ *lrh ]
hm—-l . m!
(6) mﬂmmﬂqummﬂn)~Aa“ﬂﬁ
m—1 o(i(¢ )
where A(f) : = %, —7('—'“— (3 — a)t
: i=0 .

It we denote equation (6) for brevity by
(7) ay — —Fl;(afk)
v L . :
using the assumption I, for h < —~ the function Iy : R —~ R is a con-

1
traction, also (6) has a unique solution a; and the theorem is proved.
Tn order to make a connection between the above spline method and
the linear multistep methods (see [16]) we present the following theorem |
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which gives the relationship holding between the values of a spline and its
derivative at the knots (consistency relation):

THEOREM 2. [21, p. 18671 If s € S then there exisis a unique linear
consistency relation between the quaniities s(ty) and §'(¢&), b = 0,1,...,m — 1,
namely

m—1 m—1

8 v oalf™ sl ) = bi™s + (tkyv), 0 K vy < N 41 —m
) +Y
E—0 K=0

whose coefficients may be wrilten as:

a = (m — 1) [Qu(k) — Qu(k - 1)]

(9 O s = (m — 1) ! Quyq(k - 1)
where
1 7t Ak .
( ) = —— v o 1 i " ]:‘_71
W) = e B )@)m i

TugoreM 3. The values s(h), k¥ = 0,1, ..., N of the spline function
constructed above are precisely the values furnished by the discrete multisiep
method deseribed by the following recurrence relation

m—1 m—1
(10) Y Y = kY 090 gl k=0,1,2, .
=0 j=0

if the starting values
(1) g = sty 31 = (o - 1) 5+ sy Yoneg = s{ly + (0 — 2) )
are wused.

Proof. For I, < ﬂ only one set of values y;, 7 = 0,1, ... satisfics
1
(10) with the starting values (11). By (8) the values s(t;), 7 = 0,1, ... sa-
tisfy (10} and obviously have the starting values (11). Therefore the va-
lues y(15), j = m — 1, m, ... must coincide with the values s(t;). Because
s e ("1, we define its m™ derivative in the knots ¢, by the usual arithme-
tical mean : 3]

1 h I —_——
(12) s(ty) + = ol [s"") ( t — ?) -1 glm (tz; -+ —2—) ], k=1, N—1

J

Our purpose now is to discuss the convergence of spline appro-
ximation to the exacet solution as i — 0.
Let , @ be the unique solution of (1) and as usual we write :

et = Y(te)s yi: =91, 9r: = @(ty), @/ : = @'(ty)
Sp i = S('[:];), S]:- 3 S’(f/.), — ],2, Ve b — lO + kh

We need the following lemimas :
TEMMA 1. If

| 8t — yit) | < KR?, | s(g(t) — plglte))] < K2
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where K s « constant independent of h, and

§'(t) = flbey s(t), s(g(t)), 8'(g(ts)))
then theve exists a constant K, such that
| s(te) — y(te) | <I AP, 8'(0) — 9'(8e )| < K, 2.

The proof is just a slight moditication of the Lemma 1 from [25].
LEeMMA 2. Let y e omt e, b] and s € Sn such that the following con-
ditions hold -

| sO(ty) — y(t) | = O(hPr)y r =0, 1, ..., m —1

(13) | $9(g(ts)) — ¥ g(t)) | = O(W™r), k= 0,1, ..., N — 1
and
(14) L") — ™) = O(R) on [tx, try]
Under these assumptions we have
(13) [ () —y()| = O(”") on [a,b]
where pr= nun (7‘ + )y Pa=1
So that JEARGAY
(16) | S+ — ()| = O(k) on [a, D).

The proot is similar as in [25].

In what follows we shall investigate the quadratic spline appro-
Ximation (m = 2) and the cubic spline approximation (m = 3) of the so-
Iution of (1).

3. QUADRATIC APPROXIMATING SPLINE FUXNCTIOXS AXD  THIE
TRAPEZOIDAL RULE

Tor m = 2, (10) gives :

h h
(17) Y — Yr—q = ? [.I/IC ol L’/If'—l] T ? [fh + .f/f+1]7 k= 17 2,
where f; = f(is, y(t), y(a(t), y'(g(1)))

This is a one-step method which furnishes the same values in the
kuots as the quadratic spline s.

The method (17) has a degree of exactness two and y, = @(¢,) = s(i,)
the only starting value needed.

TUROREM 4. If fe C¥[a, b) X Ceat, b] x C ety bD1X O, [, b]) thent here
exists a constant I such that for any h sufficiently small and t e [a, b], the
Jollowing inequalities holds :

| s(t) — y()| < Kh2, | s'(t) — (1) ] < KD2 | 87() —y"(8)| < Kh

provided that s'" is caleulated according to (12) for m = 2.

Proof. By Theorem 2 the values of the quadratic splines on the knots
arc the same as the values yielded by rule (17), which is known to be a
second-order diserete method. So, a constant I{, exists such that

| s(ti) — y(te) | < Iy b2

~3
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From Lemma 1, it follows immediately that (13) is satisfied taking
m = p, = p; = 2. Expanding by Taylor's theorem s;,,: = 8'(fx;) and
Vi1t = ¥'{teyq) gives for any te |t thpql :

Sher = 8 h8"(8), Whor = Y 4 Ry (B, e < E < iy

because s’ is constant.
Therefore

hIs"(t) —y"(8)] < I8t — wl+ [ 80 — Yeal
By Lemma 1, | £ — | << I, we can write
s"(t) = y"(t) + O(h)
Applying Lemma 2 for m = p, = p, = 2 it follows
L s(t) — y(®)] = O(h?)
Using Lemma 2 once again we get
1s'(t) — y' ()] = O(h?)

The last inequality results directly from Lemma 1.
4. CUBIC SPLINE FUNCTIONS AND THI MILXE-SIMPSON RULE

From the consistency relation (10) for m = 3 we get
h . Julte h
Yo — Yr— = —3‘ (v -+ dyia + Yie] = ? [fv + 4fe-y+ fes)s

(18) b =2,3,

which is one way of expressing Simpson’s rule. On the basis of Theorem 2,
Simpson’s rule yields a discrete solution ¥, coinciding with the cubic spli-
ne values s(f) provided ¥, — s(t,) = o(t,) and y, = s(t, + &) (given by
(2)) are taken as initial values. The discrete method based on Simpson’s
rule is of fourth order, providing that the starting values are of the same
order. Supposing that |s(f) — ¥ tl ) | < Kh% we may conclude of -he
basis of Lemma 1 that

(19) | 8(tx) — y(t) | = O(h?), [s'(t) — '(te) | = O(h*)
|87 (t) — 9" (L) ]| = O(h?)

Now we can prove the following theorem : :
THEOREM 5. If s is the cubic spline function approwimating the solu-
tion of problem (1) and

fe0¥la,b] x CHa, b] x OY([«, b] x COla, b]),

then there exisis o constant K, independent of h, such that for all I small
enough and te[a,b] hold :

| st} — 9| < K4, §j=10,1,2,3
provided s"'(tp)is given by (12) for m = 3
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Proof. Tt is not difficult to check that
s — y'"'(t) = O(h)

Also the conditions of Lemma 2 are satisfied with m — 3, Py =4,
Pr =4, py = 2. Applying Lemma 2 for s and successively for s and s’
in the role of s in this Lemma all the assertions of Theorem 4 are resulting,

Bxactly as in the case of ordinary differential equations the (-
dratic and cubic gpline methords considered above present several advan-
tages over the standard known nie thods, producing smooth, aceurate and
global approximations to the solution of (1), and its firsts devivatives.

The step size b can be changed at any step if it ig necessary, without
additional complications.

For the higher degree of spline, as ina usual initial value problem
the spline method can he divergent. The divergency is coming from the
too high sSmoothing of spline approximating solution because s has the
degree m and belongs to (”~!, Therefore the smoothing conditions in the
knots ecan be relaxed. For ingtance, we can construct the spline approxi-
mating solution ¢ of fourth degree and class €2 in the following form :

7 SRt sy 8"'(1y) y
(1) = s(t) - ol (t — t) +7!~ (t — t)? 4
I bk
+ %; (= 0 b 25— 1, e [ty o)

where s(tx), s'(t) s"(k) are known and the parameters ax and b arve to be
determined from the conditions

§' (1) = fliyy, $(tey)y $(g(teyy)), §'(g(tk41)))

y=f(t, i s(t _,.%), S(g(tﬂ%)), $'(g(E, 1))

(20) ty

1t is not difficult to prove that for 7 small cnough the parameters
ar and bx, k= 0,1, ... can be determined uniquely from system (20).
Under this conditions it is clear that s € C?a, b].

Leemark. 1. This procedure suggests the possibilities to approzimate
the solution of problem (1) by spline Sunction of degree m and deficiency
k(k <m). ‘

2. T'he special choice of the collocation knots could Jwrnish a higher
order of convergence.
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