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A NOTE ON THE STABILITY OF THEL GENERALIZED
RITZ METHOD

M. E. TITENSKY

(Beer-Shevay

1. INTRODUCTION

The purpose of this note is o present effective conditions of the
generalized Ritz method’s Stability in the 7,(1 < P < oo)-norms (section 4),
Another purpose is to underline that the assertions of thig note ean be in
cerlain cases put into effoct without any restrictions to the generalized
Ritz matrix’s elements (section 6).

As far as we know, a question of numerical stability was first putb
and considered by S. Mikhlin [5]. In the book he had established necessary
and sufficient conditions of the Ritx method in the ly-norm. Some sutfi-
cient conditions of the stability of this method in the uniform norm were
obtained by the author (13 —14].

The notions of the generalized Rity method and its stability are intro-
duced in seetions 2 and 3 respectively, The applications of our vesults to
the special class of coordinate systems are given in seetion 5.

2. PRELIMINARIES

Let I be a real separable Hilbert space. We consider the operator-
equation

(2.1) Au =,

where 4 is a linear unbounded operator defined on a dense domain D(A)c
<H, weD(A)is an unknown element, an element S e is given.

Drrmurron 1] 3—4,9—117. An operator A is said to be K-positively
defined (K-p.d.) if there exists @ closeable operator K with D(K) 2 D(A)
such that I(D(A) is dense in i and

(2.2) (Au, Ku) > 43 |l
(2.3) (> < v3(Au, Ku)
for some positive constants v,, v, and all ¢ € D(4). ((,) and I | denote

respectively the inner product and norm in ).
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A is K-symmetric it
(2.4) (Au, Kv) = (Ku, 4dv)

hes the
{ 1t u, veDA). If A is K-symmetric and K-p.d. and H, denotes
or a . y
completibn of D(4), in thg metrie

(2 5) ['“’1 ‘D] == (A'M,, I{ID)T I/bb IJZLIo a [ua ’LL],

- d

d A hag a closed K-p.d. an

¢  regarded as a subset of H'a,n 1,188 b o8

then H, o bﬁxlte%fiion A, which is cmltmuou'.sl y inver L'lm'l(i i

K-symmgtl‘le 13(;!) be ‘:1]1 complete system of linearly 1;{( blof s
'1135141'(13:](!%2 a%oordinate gystem). T]}e a,pprfr.)mmzhte solution g

;I;T;Zed Rit-z0 method can be written in the form

n

— (n) .
(2.6) Un 1{;} a; Pi '
et ng
te the scalars a{(¢ =1, ..., n), we must solx:e‘ the following
To compu calars ay"(1 - ‘ ‘
system of algebraic equations »
(2‘7‘) I p Ry et 2=y

‘ ) ‘ re vectors
Here o = (af™), f© = (ff")f" :((,f ) _K<Pi)1)(1 T 1}@5 i nge ZLgemem-liz‘ed
(: = K3 r — = O-i ’l/, J = g ey ! :
and (Rq)y = (Ao, (o) = ¢y = ¢ e
T, Ml ; if (2.2)-(2.4) are hold, there exists
It is well known [9—11] that i (1 gt .
one and only one solution of equation (2.1) in H,

(28) I’ll/n’—u|Ho—‘)0

e ﬂ J?{O i I we come to the usual Ritz method.

3. NUMERICAL STA]_IILITY

" ake errors. Lieft M ="k
e ¥ tem (2.7) we make . SEPLL S
he ting down the sys B e ; nner products
d ot? g}lleen(:xrll;;ll)berrors arising in the Gvrllél&tm](li Of?' gmll ) 1’%). Let
. ok : NS k Tl s ,
(z]; Ko;) and I'y the matrix \V.ltlfl'(nle lrﬁ?ﬁoﬁ 1'%?0 'vector "with elements
B N ing ervors in fi" and ¢ T cact!! svstem

3" be the ([Jol‘l_jf‘-"“ilfu,ml:_iﬁ et system (2.7) we golve the ,nonexact” sy

8. Instead of the ,exact” s, !

(3.1) | g (Rn -+ Ta)d) — fo 4§,

: the ,,nonexact’’ Ribtz
4 M)y ig the column-vector of thi " ) -
Wh?e b(rg;V:e (a,béls)ﬁr'né""tﬁgt)(és.7) and (3.1) are solved quite exactly, i.e.,
system. »
\\%thout round-off errors.

i ™., 2. Leb
Let 2™ denote a vector with elements 2%, ..., &

” i/p < OO)
“z(”) I -3 ( Z |zgn) |17) A<y )
i=1

)

Hz(u) ”l(m — Max
co

n
1gign 2(1' ’)I'
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DEFINITION 2. The solution of (2.7) is stable, of there exist positive
constants M, @ and P, independent

of n, such that for 11 liewy < M and
arbitrary § the system (3.1) is solvable and the followiné inequality
holds

16® — ¢ » ngl) S@ILuf gy + P 5o I cny

where ||, |14 are the norms

of the matrix (Ya)5-1 in 1§ It should be
noted that
(3.2) ] ey = T [l noag A Y vl
o] <ign =1

DEFINITION 3, The aprbximative solution of the generalized Ritz
method (2.6) is said to be stable, if there exist positive constants M 10 Oy
and P, independent of 7, such that for 1Ty Iy < M; and arbitrary
3¢ the system (3.1)

is solvable and the followin?;‘ inequality holds
(00—t |w, < Q) T lwy -+ Py 30 l,
D

n))
»

n
where v, = Y b g
i=1

DEFINITION 4. If the solution of
of the generalized Rity method

(2.7) and the approximate solution
hod is called stable,

(2.6) are stable, the generalized Rity met-

4. RESULTS

In this section some results on the generalizeq method’s Ritz stahbi-
lity will be formulated and Pproved.

THEOREM 1. Let « coordinate system (i) be such that

(4.1) e =1"(1'=1,.. ) i
and
(4.2) max les] < 2y < 1,
lgisuj:l.j?”»
where )

0 1S @ positive constant

) y tndepende
n the 1 -norm,.

: nt of n. Then the solution of (2.7)4s
stable 1 '

Proof. Following [13—147 rewrite the system (2.7) as
af™ = fm __ Y ca® (i =1
J=1, j#¢
Then

(4.3)

s eaey W),

3
lat ”l(”) < ey o T+ max Z Jcisf Nl (n)"
oo 00 lgign J=1. juu [oo
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TFrown (4.3), taking in account (4.2), we obtain

(4.4) h [ < (1 — 2002100
o0 o0t
Now
(4.5) 1 by = max I(f, Ko [ < ax [ qllfifl < 2l
v lcb) I1<ign l<ign .

because of (2.3) and (:.1). (4.4) and (<.5) inmply that || R

and |lat ¢y
fee)

!“11)
1o ~
are bounded above independently of #. Hence by Theorem 13.1 [5] we
immediately come to the desired result. R
THREOREM 2. Assume that the assumptions of Theorem 1 are fulfilled
and there exists « positive constant Ny, tndependent of n, such that
110 < Ny (1< p < oo),
(4.6) 1
Then the solution of (2.7) is stable in the 11 < P < od)-norms.
Proof. Let Ri' be the matrix with elements G = (] = 1,..., n)
and 1 < p < o0. We have by Holder’s inequality

n ki

| | n p i 1/q L) 4
:2ww>42mme)(ZWﬂ P =)
i=1 7

i=1 i=1
. To— -1
for all a® = (2™)(i =1, ...; n). Since by Theorem 1 Vi e < (1 —2) 7
[ee]
we obtain because of (3.2)

no

n ) n ‘
% \‘ Y, gu P < (L — 7)1 n 2 Eiidig
F=1Mqi=1

[N
Hence :
- il 3 =140 ()|
~ ”]‘)’nl ™) Iél(n.) < (l - )‘0) !.‘ i) Il 1(n)
(4.7 » »
Ry : led ‘e independently of n. -
and | By (1 < p << o) are bounded above independently o ;
»

Now we estimate _
(L(") - I{;l f(n)
i g T 1 Ha s ha o (or)
in the l,-norm. Then using (4.6) and (+.7) we establish that ja ”ij(’"')

are bounded above independently of » too. Q.I5.D. '
Turoriy 3. Let under the asswmptions of Theorem 2 the wnequality
(4.6) be true if p = 1. Then the approximate solution of the generalized
Ritz method (2.6) 1s stable.
Proof.  As
#
U — Va0 = ¥, (@ — bi) o

f=1

and gy, =1 (¢ =1, ...), the desired result follows from Theorem 2.
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5. SPEARED SYSTEMS AND STABILITY

In this section we consider a class of coordinate systems for which
(4.1) and (4.2) are easily verifiable,

DERINITION 5 [2]. Let ( ¢:) be a coordinate system and

. ol =1 (i1, ...);
(b) Sl}p N ﬁ s i1 <2y

(2o 18 a positive constant) ;

(e) im % [y /] = 0.
RS M

Then this system is called a speared system with respect to operators
4 and If.

DERINITION 6 [12]. Tf (o) satisfies the assumptions (a) and (b) only
(see Definition 3), then this system is called a quasi Speared system with
respect to operators 4 and XK.

Tusorus 4. Suppose that (@) 18 a speared system with respect to A
and I. Then the solution of (2.7) is stable in loo. If, moreover, (4.6) is Jul-
Jilled, then the stability takes place in the 1,(1 < p < a0 )-NOTMmS.

Proof. As () is a speared system with respect to 4 and X we con-
clude that | ;! !II(,,) <0, where C'is a constant, independent of » [2]. Besides

1 ].., are bounded above independently of n as well (see the proof of

Theorem 1). Thus the assertions follow now from Theorem 13.1 [5] and
Theorem 2.

TomorsEsr 5. Let (9) be « quast speared system with respeet to A and
I and 1y <1 (see Definition 5). Then the solution of (2.7) 4s stable in the
les-norm. [f, mareover, condition (4.6) is true, then the stability takes place
i the lynorms (1 < p < o).

This result follows immediatedly from Theorems 1 and 2.

6. EXAMPLE

It i3 possible in certain cases to chooge an operator K so as to ensure
the stability.

One of these cases is embodied in the following example.
Let H = L, [0, =] and
(6.1) Auw = — d/dz (b(z) du/da)

is defined on the domain D(A4) of twice continuounsly differentiable func-
tions with the boundary conditions

(6.2) w(0) = w'(x) = 0,
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Let b(a) be continuounsly differentiable on' [0, =] and b(x) > b, > 0. Let
us assume that K is given by the formula

(6.3) Ky — Sa(t) b1 (t)a'(3) At

a funection a(x) > a, > 0 will be chosen below). Now we write down the
gcalar produc(t (A, ?(u) in Ly [0, =] (4 and I are as defined in (6.1) and
(6.3) respectively)

(6.4) (Aw, Kv) = — S[d/dw(b(m) duw/dx) S a(t) b1 (¢)v'(¢) dt]dw.

0 0

Integrating (6.4) by parts we have for all u, » e D(A)

(Au, Kv) = — [b(m) du/de S al(t) b1 (4)'(8) dt ] :+
% du do
+ S (@) ——— do = (dv, Ku)
doe dz

because of (6.2), i.e.,, 4 is K-symmetric operator. Next
w(z) = S w(t) dt = S]/aTt) w'(8) Ve '(t) dt.
0 0

Hence, by Cauchy’s inequality,

elE, < = Sa-l(m dao \ al@)(w(2))? dow = vi¥(Au, Ku),

[ T |

™
—1/2
where vy, = ( nS a~l(x) dm) 4
At last we use Cauchy’s inequality once more to estimate

| Buw|i, = Sa(t)b“l(t) w'(?) dt|* da.

Sl ™) 4

iz
Thus we come to inequality (2.3), where y,= (TC Sa( @) b=*(z) dw) , i.e.,
0

A is K-p.d. operator.
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Let H, denote the linear space of all real functions u(x) absolutely
continuous on [0, 7], satisfying the boundary conditions (6.2) and such
that w'(x) e L, [0, 7] [6]. BEvidently that

[ |a, = afx)(w'(2)? de.

Cl ™

We choose the next system as a coordinate one

4 —1/2

(6.5) @ == 7, ! gin 7 m(ga(w) €082 ,) dm) (1=1,...,),

where »; = (2/—1)/2. It is clear that (o) = D(A4) and this system is com-
plete in H,.

We make sure that

O{Z.:(_A(Pi’ If(Pz) :1 (1/‘:1, ...,).
Now we have

(6.6) Ciy = 1; 1 Sa(w) COS 7; & CO8 15 xdw,
0

=172

where [; = (S a(x) cos?r; o da:)

Integrating (6.6) twice by parts we obtain
(gs =1+ —1, ayy =4 )
o = 27 L i[5 [0/ (w) cos gu 2§ — aif Sa”(m) co8 oy @ do —

0

(6.7) - it S @" (&) cos gy o de + v’ [a' (@) cos wjz] & ]
0

Hence we get the estimate

el < 2770 ag 7 [1a/(0) |+ fa'()| + ™ max la"(2) | i—j)-,

i.e.,
[e=]
sup ¥ eu| < Ay
Vo=l
where

Po = 4n 7t ag ' [4(0)| + a'(m) | + = max [a"(a) ] Y ot
rem me=1
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So the system (6.5) is a quasi speared one with respect to operators
4 and K. Let us choose, fir example, a(w) = e, where ¢ is a positive nuwmn-
ber, a, = 1. If 2 is too small, condition (4.2) is always valid, i.c., the gene-
ralized Ritz method of problem (2.1) (A is as delined in (6.1)) is stable.

7. CONCLUDING REMARKS
Remarl; 1. An important class of equations are those of the form
- dre =
(7.1) S=r + Aw = f(t), w(0) = u, 0 <t < 7.

Here an operator A is Ii-p.d. and K-symmetric acting in a real separable
Hilbert space H,; an element w, e I o #(t) is an unknown function, f(1)
is a continuous one on [0, 7 (f() € H, for all ¢ € [0, 7).

We are going to investigate the method’s Galerkin stability of pro-
blem (7.1) in one of the following papers.

Remark: 2. All the results of our note are true for the coordinate
systems

(CPI'"L"))(?Zzl,..., mi; 0 < my, oy <M <y <y

as well. Blements (™) do not, in general, appear amongst  eclements
(9" ) for I = 1,2, ooy [L7T—8]. These systems are widespread in
applications (see the finite elements method).
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