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1. INTRODUCTION

In this study we are concerned with the problein of approximating g
locally unique zero z* of the equation
(1.1) Px) = 0,
in a Banach space Yz, where P ig % nonlinear operator defined on some
convex subset of X, with values in Y,

The Kantorovich convergence analysis of Newton’s method (which
was found by L.V. Kantorovich) and Newton-like methods with a para-
meter A have had a rapid growth over the past two decades [1 — 19].
But the discussion of Kantorovich’s analysis for multipoint iterative me-
thods are less developed (8, 9,10], although the fundamertal theory o
multipoint iterative methods was developed by Ostrowski and Traub in
the early sixties [19, 20]. The reason is that the. expression P(x) cannot ea-
sily be dominated by a real scalar tunetion for multipoljut‘ iterative me-
thods. Of cburse, from the efficiency index point of the view (19, 20],
multipoint iterative methods are much better than that of Newton’s
method and several one-point methods. In the second section of this study
we will establish the Kantorovich convergence theorem and give an ex-
plicit expression for the error bound which is a funetion of the initial
conditions for this new method (which is called the midpoint method of
order 3). In the 3r4 Section, we shall show that the midpoint method is also
of order 3 under the definition of S-order which was défined by first ag-
thor in [11, 12], and the asymptotic error bound is thesame as that of
Halley's method [11]. In the last section, we will present some possible.
applications of the midpoint method, and apply the convergence theorem
fo the solution of nonlinear -integral equations -appearing in neutron
transport.
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2. BASIC ITERATION RELATIONS

First we define the method as follows :
For an arbitrary choice o€ Xp, let us define the midpoint pro-
cedure by,
Y = Tn — P'(a,) 1P (a,,),

2.1 ri et
( ) Tpyy = & — P [?(“n + f’/")] P(‘T’“)‘

We now try to find an expression for P(a,,,) which can later be domj-
nated by a real function.

LEMMA 2.2. Assume that P: D, < Xy — Yy is twice Bréchei-diffe-
rentiable, where D, is an open convew domam included in  real Banach space
Xg, with values in another Banach space Y .

Then the foﬂowmq identity is true :

P(®n4q) = SP (gn -+ Uy — ya)) (L= 1) Ai(@ayy — Ya)? =

(]
__]_I.P,,_l_(gp uh )+ (Yn —x):’di—“ — @)
Zs [2 n J’ﬂ n 2 ./n i
(4]

(2.2) 1
P [? (20 yn)] SP"(.m +

Q

t 1
< (o —m) b (g = )

)

1 .
+S[P”(xn + Uyn = @)1 — 1) — l‘ )”I. T+ ?t (Y — (Ifn):,]dt(g/,,——mn)'z.
i)

9
Proof. We obtain in turn
P(,,;) = P(x”+1) = P(‘?/n) T P’(?/n)(mnﬂ — W) -+
+ Py,) + P(yn)(n,y — Yu) =

1 3
1 SI)"m F Ui D)L~ @, — 42)2
0 ' )

+ PYn) + P'(ya)(@nsy — y).
. Observe, that from (2.1), we have

o= 20— PP (@) - P(0) 1P () — P[% (yn+xn>]’lp(wn) -

= Yn _',[P* [% (Yn + 'Tn)]_l_. P’(a’,,)‘lJP(wﬂ) =
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-1
=t 2| St [ T2t )| = 2t |12 e =

:,[!/1_1),:‘)

]

(7/n T '711)]_1[ Pl[‘})— (?/n + .'ZT,,)] I ly(mﬂ)] (?/n i wn)

Therefore it follows that

Plyn) + P (Ya)(7niy — Yn) =
i

== P(UH}T] P (Yn) — [— Yn - Xn ]J(muﬂ_ — YY)+

T1
+P[O Yn 1 @)

N}

(Tusr — Yu) =

L__I

1
" —P’ 1
Plya) + [2 Y

]5‘"41}1 — llﬂ

+[I"< ¥a) — 1[2 (U + @4 >”<n~m—yn>

1
" S [P'(@n + t(y, — &) — P18y, — Zn) —

0

II:P [ (o + ‘T")J T P’(xn)] (Y — @n) —
i -1
1. [Pl(f/n) - PI[T (/I‘/” + ‘T”)]]I)’[ - (Jn -+ b,,)]

(7|5 ot e |- P(en | () =

b
SP” Ew + WYu'— @)L — ) At (g0 — 3,)2 —
(

)

. ;
S P”[ @ (yn = m)]dt%(g/ﬁ — @)% —
B _
1

tys 1
SP [ [ Yu ~F &n) - — (1/,, — wn)]dt—z—(;t/u — &)
5 L

1

Pl tan [ 2o Lo —an) |ty — e
-- 2 Yn n- n 2 Yn n 2 n w)e

That completes the proof of the lemma.
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3. SOMIL: USEFUL INEQUAILITIES

LEMMA 3.1. Assume that in addition to the hypotheses of Lemma 2.2.

the following estimates are true:

(A1)

(A2) | Pt} < —g' ()Y, HP[ (- yn)]

(A3)

(Ad)
and
(A5)
Then
(C1)

(C2)

(C3)
and
(C4)

l9n — @l S 85 — tuy | P(2) I < g(ta),

-1

1

oL
M[l+ 3 ]2
6M2B

IP"(2) | < M, | P"(y) — P"(@)] S N[y — o

N
s

[ Pugy == Yl € tayy — Suy
1

Py + tyn — @)L — 1) —
[

1 I t

— — P &y, D n df Yn — a‘ﬂ”
o Ty ]” H

I P(@nan) | S gltngy)

H ]
H .?/I'+1 - mn-}ll! § 8!1+1 . tn+1,

where 1, = 0, 1, and ;- are defined as follows :

(3.1)

Proof. (

-1
- ——“—P'[-]‘—.m 2] SP( ot 5 (0~ 30 )ty ~ w2,

Sn — tn i _gé@—
g'(ta)

_ g(tn) g
g’[% (t”. + Sn)]

)

tn 1 — tn. =
+

I*lom (2.1), we get

Bogy — Yo =
1

0

1 -1
§_(I';t7t Sn
J[2( -+ )]
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5
By taking norms in the above approximation, we have
[ @usy — ¥l S
S R ] I 1 g ERECT A S) (PR
~ 2 2 k3 n 2 '
1 -1
§ L gll:? (T‘n - Sn)] ? (Sn TR tn)z < i‘ﬂ+1 — Sa.
(02) : Moreover, we have
: t
HS [p"(wn -ty @) (1 . P [a e g m)] ]dt
0
1
< S [P (a6, 4 tyn — 2a))(L — 1) — (L — P ()] ‘+
0
: 3
1 ilt g 1
— _P” T, _'*—1)” Tn + — (?/n = w")]] dt” §
i[5 Fea—gr a3
0
( N N
< N\UL — ) dtijy — 20| 4+ — tdt|, Yo = @pll = —— | ¢ — 2]
4 244
0 0
(C3) : From Lemma 2.2, we have

M , TN
IP(@ui) | S -3 | Tnsa — Yali® + "?I-H Yo — Ta|®
. -
+ ”i P'[—‘;— (@ + y.,)] 19 — za|® €
P'AT
L (tn+1 I Sn)z + ”'1* (Sn - 1./71)3 ‘{"
112_ (SﬂI; t")B §
1
e (s )
8 2
TIN M2 _
. [92(3 e ](S” o '
S 5 (tapr — 92)® + 1 K = J(tasa):
: B 9 (ta + $n)
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(C4) : Finally, from (2.1) we get
H9n1 = @ag | = 1| — P00y ) P(@040) || 1| P (e00y,)Y | P(oayy) || €
§ i g,(t‘ﬂ+1)_lg(tn+1) = Sp41 — ?fn.,.l.

That completes the proof of the Lemma,.

We have now built up the hecessary estimates to prove the main
result which is the subject of the next section.

4. THE KANTOROVICHT CONVERGENCE THEOTEM AND IERIXOIR BOUNDS

THEOREM 4.1. Let P: Dy c Xp — Y5, Xp, Yp are Banach spaces,

real or complex and Dy s an open convex domain. Assume that P Thas 2nd
order continwous Fréchet derivatives on Dy and that the following conditions
are satisfied:

(4.2) i P @) s MYP"(2) — P(p)IS N2 — yi,
Jor all @, we D,
(4.3) 1P (20) 1l < By |l Yo — &l <
1
" N
(4.4) M|1 -‘—i]z <K,
6 M2p
1
(4.5) h=IHpn € —,
and
(4.6) S(yoy 11— 1) = Dy
where S(@, r) = {2’ e Xp; |lo' — 2||< 7l
1 1 "
(£.7) 9() = — Kt* — —1 4
2 e B
1 — l/ll— 2h
.8 o= 1 a7
(4.8) " W 7
and

gt 1 —ViZan

(4.9) —
where i is the smallest root of equation (4.7). Then the midpoint procedure

(2.1) 4s convergent. Also @y Yy, € S(yg, 1y — v), for all n e N, The limit o*
8 @ solution of the equation P(x) = 0.
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Moreover, we have the following error estimates and optimal error cons-
tants :

{4.10) o, —a*[gr — tu, for all n,
(4.11) bopy — @™ < v — 80y for all n
and

: el (L — 0%
(‘1].)4) )1 i— t“ = i*&r 0 .

Proof. Using mathematical induction, it suffices to show that the
following items are {rue for all .

(L) 2, € B{(yo, 11 — 1) ;

(IT,) [y — @[S 80— 15

(111,) Yn € By, 1y — 1) ;

(IV,) PP () s — ¢'@ )

(V) (P[5 ]| s=o] S+ ]
and

(V1) gy Yull S bugy — i

Proof. 1t is easy to check in the case of n = 0 by initial conditions.
Now agsume that (I,) — (VI,) are true for a fixed » and all smaller positive
integer values. Then, we have

(Iﬂﬂ) : H Tnv1 — Yo !l § “ Xyy1 — Yn H -+ ” Yo — ?/0” § (t11+1 i S") -+
+(Sh —8g) = tuey — S =ty — 0 <7 — 7.
(I1,,,) : Trom (C4), we have .

[ %ns1 — @Taprll S Tugr — Spaa-
(11L,,,) : Moreover, we have
| %eer — Yol S M ¥psr — Burall + |l PBypr — Yull +1yn — Yol €
§ (Sn+L e tn+1) 'I_ (tn-!—l — Sn) _I" S — 8y = S‘n+1 — $ =
=Sy — << — .
(IV,y,) « Furthermore, we have
1»
P(@y 1) — Play) = S P49, Uwyyy — %)) di{ @,y — )

0
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80, we obtain
” P,(mni-l)_ -Pl(wo) ” § J[” Ty — 2y ” § If(tn‘+1 e to) B=
1—

= K,y <Hr, =K =" Vl =2 _ kK 1 — Vi -2

A
— l___l/l — 2h < - 1 < 1
p = 8 Pl
and by Banach Theorem [21, pp. 164] P'(x,,,) ! exists and
. P
| Py S
1 — | P'(z,) TP @y) = Pl |
el I B oy [T it ences
Lo PRt e o L aef i e By
H
1 1 l
Sepe R L
'_B‘_ . If(tn+1 D tO) ki 1 Iftn+1

(Vasy) ¢ From the estimate

r1
Pr! Y Byyq - g/,,ﬂ)] — Pz, =
1
e
0

we get
4 1 N r l
[ 2 [?mﬂ ) | = Pl < S S b~ 20l + T g — 2yl

I I I
(tn+1 - t()) + >§— (871+1 ' tO) :?(tn+l *}“ Sn-}—l) §

t 1
Y (Byry + Yoy — 2%)Jd55 (Zosr T Yuer — 22),

M

2
K <l —V1 2%
S E‘Ul + ) = 101 S K 7 - =
:i_l/]_&zh§1< 1
p I P(ag) )

1
Therefore, by the Banach theorem P/[ ?(wn 1+ v H)} exists and

(o[ ot |
“ P [_2— (g + %+1)] ,’ S

[

il P )i

1) P H P [% (Bpry + Gory) — P"w} |

VAN

e
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£ 1 P <
1-—- BM“?('%H—I e yn+1) _ mﬁ{
< = <
SCLTTM '
— ——| By — %o + Yna1 — %
e 2
< . . S
st a1t o) nering |
lB 2 n+1 0 2 w+1l 0
< h =
ST K K o
_B_' _“? (tn+1 to) W 7(8n+1 ol tO)
1 Arg! ¥
=2 ]f — = — g [?(tn-)l + 87l+1)]

1
—B— - E ( tn+1 + Sn+1)
(VL1 : Using (2.1), we obtain

' -1
| [ :; (‘/'Uu+1 + yn+1)] P(m”"'l)

1% — @y ]| = I‘

1
§ H .‘P’,: E (mn+1 + :l/1l+1J

( n+1) ” §

1 -1
§ - g’[_z—(tn+1 _I— S1L+1)] {/(tn+]) = tn+2 — tﬂ+l'

We now prove (4.12). Notice that

K =

glt) =2 (1, — )(ry — )
g,(tn) == *—% [(7“1 = tu) —f'- (‘7"2 —J tn)],
g'(ss) — ——;E (7 — 80) - (73 — 52)]

and

g[% (b -+ su)] i

1
=T e [7"1 — %(in + s2) - Ty — E (tn + Sn)]-



148 D. Chen and I K. Argyros 10

Also, we get

I
*2’—‘(7'1 . tn)(?’g T tn)
R o — by —

:;E [(ry — ) + (ry — )]

oo Wi t)® -
ry — tn —,— Ty — tn

Then by (3. 2), we have

ry — tn Ty — tu)
Tl — Z('n+1 =7 — tu +_ = Ll p— )( 2

Iﬂ %"‘ 3:; | f-u —f" Sn
o g ———
2

(/)11 _‘_tn) 8

[7'1 e t”.+ Ty — t"][/rl — 1y ‘f— r— S + ry — tn _I‘“ Yo — 871]
and similarly, we get

¥y — tn+l ‘a

- (ra — t)°

[7'1 — tn -+ Ty —— tu][?'l — “}“ 55 Su + Yo — by + Ty — S:z]

So we obtain

Tt [AL] Ly e L [11]_ o
Ty — Ty = by Ty =
Then we solve this equation for », —1, by using the fact that r,—¢, —
==l 4 (1 — 02)9/0. Tt is easy to see that

— 02), -
ry — th = \(1 2 21:)—6:; -1,
1_ o

5. SOME CHARACTIERISTICS UNDER THE DEFINITION OF S-ORDEDR

To find the sufficient conditions of order of convergence, Chen

[11, 12] recently suggested a new definition of order of convergence,
called S-order.

We will need the definitions ; [11, 12]
DrriNrrion 1. A sequence of iterates {m.}, #» > 0 in a Banach space
Xy 1y said to converge with order p > 1 to a point g* e Xp it
” Byt — x* ” < O” XTn — o* ”P

for some ¢ > 0, where ¢ is usually a function of #* with the norm of ¢
smaller or equal to 1. We will denote ¢ 2*) by ¢.
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DEriniTION 2. ( S-order) Let g(2) be a scalar testing function of order
2 given by g(f) = % 12— E t4+ -2 for Some nonnegative constants

It, B, 4 satisfying the condition b — K Bn < % A sequence of iterations

defined in a Banach Space Xp is said to converge with order p > 1 to a
point o* ¢ Xp if for one-step iterations, and multistep iterations the
following conditions are satisfied respectively

E(g(tn+1), tny byp) = g(tn+1) — (1, bua) gy — )’ =0

H
BgCtur)y B $0) = glthss) — oltsy 30)(5n — t)? — 0
for some ¢> 0, where
E(P(wnﬂ)y Tuy Yuy wn+1) g -P(mn+1) L R(wm Yny xn+1)‘
Here B, R are assumed to be functions of thege variables in the corres-
ponding spaces.

Finally we will need the definition which was also given in [11, 12].
DEFINITION 3. The asymptotic error constant o(t*) is defined by

G(t*) = hm g(twl-l)
0o (B, 1 —tn)?

for the single step, whereas for the multistep case it is defined by

C(t*) — h-m g(tut-l)

100 (8” -— t,,)p 3

‘We try to find the S-order and asymptotic error bounds for the midpoint
‘method. Notice that . '

%K”(s»— i Py
1 K 1
E‘ —? (tn + 8n)

9(tnsy) = %(t,,+1 — )04

1

. o K80 — 12)?
K 1 =R ] 4

=—| —¢g'l — ts '3 —{3 "tng ==,
2[ 9[2( +S)] 2 )]+_;.__’-§(t.-f—8-)

8

? (8n = tn) K’/4

+
LI o oo T
g [ 5 (tn + 371)] 5 > (i + Sn)

(3. —_ tn)g =

== 0" (:tn, sn) (311 Ul t”)'s

3—c. 1140
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f0 by definition 1, p = 3 and
C‘"(t*) — linl CM<t11, Sn,) =—

J 72 YZ N)
L 5 = IL-B— . 011({’4);

where Cy(t*) is defined in [11].

G. ON THE SOLUTION OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS ARISING
. IN NEUTRON TRAXSPORT

In this section we use Theorem 4:1 to suggest new approaches to
the solution of quadratic integral equations of the form
1

(6:1) #(8) = y(s) + mc(s)S a5, 1) a(t) dt

in the space Xz = C[0, 1] of all' functions continuous on the interval
[0, 1], with norm
Il = max |x(s)|.
Ogsgl
: y is v ' lled the *“albedo” for
Iere we assuime that 2 is a 1eal_number_ca d the oitdo
qcattel}'ir(l}i'em;d the kernel ¢(s, ?) is a continuous tunection’ of two variables
s, t with 0 < 8, t < 1 and satistying

(i) 0 <q(s,1) <1,0 <8t <1;
(ii) q(s, 1) + qt, §)=1,0 < $ 1 < 1.

The function y(s) is a given continuous funection deifined on [0, 1],
1 finally a(s) is the unknown function ﬁuught‘m [0, 1]. .

= l]*]qugbtio(ni of this type are closely related with the work OI S. Oh@-
drasekhar [7], (Novel prize of Physics 1983), a_:nd_ arise in the Phe({{els
of radiative transfer, neutron transport and in the kinetic theory of gassos,

27, [7]. - _ . ‘
D [T]]l’er(La lxis‘cs an exterisive literature on eguatlons like (6.1)-un(1e1
various assumptions on the kernel ¢(s, ¢) and i is a real or complex 111111}1-
ber. One can refer to the recent work in [1], [2] @nd tl_le references t 1§1_e.
Here we demonstrate that Theorem 4.1 via the 1‘0@_1'&151\»'@ procedure (2.1)
provides existerice results for (1.1). Moreover the 1te‘1'at1ve procedure
(2.1) converges faster to the solution than all the prewous}kno*tvn ones.
Fﬁrthermore a better information on the location of the solutions is given.
Note that the computational cost is not higher than the corresponding
one of previous methods. . i , :

Fo]i‘ simplicity (without loss of generality) we will assume that

a8, 0) =—5 for all o = [ < .
s+t

Note that ¢ so defined satisfies (i) and (ii) above.
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Let us now chooge 3 — 25, y(s) =1 for all s ¢ [0, 17; and define
the operator P on Xz by 7

Ply) = m«(g)s

0

&

FIE £ (t)dt — x(s) - 1.

" Note that every zero of the equation P(x) = 0 satisties the equation
Set a,(s) — 5o use  the definition of the first ang second Fréchet-

derivatives of the operator P to obtain using and Theorem 4.1,
1
s
S dt! =2|xIn2— .34657359,
s+t

¢}

N = M =9 2| max

0<sg1

B =] 2—"(1)4,‘5 = 1.53039421,

12 IP(OPA) > ealng — 1265197107,
k = 619933045,

1

)
2

h = 25160318 <

I

811111702

1‘1
and
8 = .173133%65.

(For detailed computations see also [1], [2]).

Therefore according to Theorem 4.1 equation (6,1) has a solution
#* and the midpoint procedure (2.1) converges to z+* faster than any
other method used so far according to (4.10) and (4.12). (See also, [1),
[2], [7]). Moreover the information on the location of the solution givern
here is better than the ones given before,
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