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ON A NEWTON TYPE METHOD
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1. INTRODUCTION

In this paper we shall give a convergence theorem for a Newton
type method for solving operator equations in Banach spaces. We shall
also give a numerical example.

In order to find the roots of a single nonlinear equation f(z) = 0,
Moser [2] has proposed the following iterations

Ty = Bp — ?/nf(mn),
Yny1 = Yn — ?/n(fl(mn)yn *1); n = 0) 17' 2"

The first iteration is similar to Newton's iteration, in which case gz, is
equal to 1/f'(x,). The second iteration is Newton'’s method applied to
gy) =1y — f'(a,). Thus, if ¥, is close to [f" (@), then g, is even closer.
This scheme. can also be interpreted in terms of an approximation to
the inverse function of f(x) (in fact the above formulae represent a later
interpretation, see [17]). This method was developed as a tool for solving
problems with small divisors, for which the application of Newton’s me-
thod or successive approximation method are dubious. Tt can be shown

that the order of convergence for the above scheme is (1 -/ 5)[2 =
=1,62... ' ;

An improved scheme was proposed by Ul'm [4] and Hald [1].
For the equation

(1.1) B(z) =0,

where ¥ : D < ¥ - ¥, X and Y are two Banach spaces and D < X an
open set, the authors have considered the iterations

(]2) -’l"ﬂ+1 = @y — AHF(x?l))

(1.3) Ang = A — A (F'(2y,) Ay — I) = An2] — F'(au,,)A,),

# =0, 1, ..., with the initial guesses g€ D and A, e I(Y, X), where
L (Y, X) denotes the Banach space of the bounded linear operators from
Y into X.

Iterations (1.2) and (1.3) keep the properties of Moser’s iterations
and the sequence (x,) cohverges quadratically to a solution of (1.1) (sce
Zehunder [5] and Hald [1]).
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Under Kantorovich type assumptions, similarly with those of
Hald [1] in the real case, we shall give a convergence theorem for the
method (1.2, 1.3). Our a priori error bounds are sharper than those from
[1], [3] and [5]. We <hall also obtain a posteriori error bounds.

Finally, we shall give a numerical example, related to a Hammers-
tein integral equation. We shall see thal ib is advantageous to use the
scheme (1.2, 1.3) when we solve a large nonlinear system of equations,
because the amount of arithmetic operations for this algorithm is less
than in Newton'’s process.

2. CONVERGENCE THROREM

Concerning equation (1.1) and the iterations (1.2) and (1.3) we have

TuroREM 2.1. If F s Fréchet differentiable on S(&q r) ={xeX:
| —a | <7t < D and for some k> 0, q > 0 and ¢ > 0 the following
conditions hold

(2. 1a) A, ts invertible and Azt e L (X, Y);
(2. 1D) iAo F ()]l S
(2. 1e) | AT (@) —F ()| < kllo—yl, Y oye Sz, )5
2.1d) I T — A (x| < 45
1 d?
(2. 1e) d:=kq4¢q < —;V—Z—‘ and r >+ m

then the sequence (@) 18 well defined by (1.2) and (1.3), remains in S( Loy 7)
and converges to @ solutton * of equation (1.1). This solution s unrque
in DnS(wy 1)y of 1< (1—q)/k. \
We also, have the following a priory error estimates

o) ey o
@2y 1o — o< GEDL A —F (@)t ] < O = 2

1 on ¥io

and the « posteriors error estimates

(2.3) §an — 2%l < (2d)" " otw — T ly 0= 25 35.
1 3(1 + d)
here (= ————— cand € = s[4 g |l
WRETE T T —aa) ? 1 — 3d? ol

Proof. For o and 4, given by (1.2) and (1.3) we shall find similar
relations to assumptions (2.1). ’
Trom (1.3) it follows that

(2.4) Aw =(21 — A () AW, for all we Y,
(2.5) I — AF () = — A (xy))?
and

(2.6) I — A Ag = A F () — L.
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Since, by (2.1)

(2.7 I — 4P < )1 = Ao () || +- || Ao B

: M) — J
s Zu‘/) + Vi d’ we Obta:in, USing (2 6) “I 0) 4 (ml)) ”
-6), e

implies that p (i
Popl; ab there exists (4,4;1) e I(X) ang (A dgt)-1y
1-%0

(2.8) 4, is invertible, A7 ¢ 7, (x Y)
)

nt d T -1
From (2.4) and (2.7) we obtain AT < s —a).

(2.9)
and, by (1.2)
AOF(“&) = A4, [F( @) ‘-F(xo) ‘F’(xo)

= Ao[F(2)) —F(wy) —F'(1,)

But, from the 3
But, Ssumptions
is differentiable on S‘(rfo,l?';l&

T4 E(@) | < (1 + d)) 4, F ()]l

(xl‘mo)] -+ Ao[F(xo) -+ F’(xo)(xl“xo)_-’
(“'1”‘1'0)] =ten[.1 ~A0F'(x0)]AOF(wO)

(2.1) it follows th
i T at ¢
y AB'(+) is Lipschitz, so e operator A ()

146l () — Pl — Flag)a, — o)1) < X g 1o
3 1% |2,

thus, from the above inequality and (2 9)

(2.10)

A F(a) | < (1 d[’iw T
+ d) P +qJ= +d(dz*q2).

2k
, and (2.1c¢)
(211) | 4,(F () — F(y))| <A+ d) 4 F(2)

for all #, 4y ¢ § :
and, by ’(2J.5) (2 1,

(2.12)

We also obtain from (2.4), (2.7)

— F(y)) | <k(1 4- ) lo—y|

|
I

I — 4.3 Z L — A.F & d
) ” 1 (1)”<” 0 ’( 1)”2< i
mnce .8 —_ .
" eS j (2 c’gi an(};(zfl(i)terlig are similar to assumptions (2.1) w 'n’
l];)87027 ebsye ]’]ed]c] : (onﬂ) lhieas i Sa(%o’nf)(l.m and (1.3) are well de.fineziet%z’\t
) h

FiI'St Ietv US oy
as follows 8 congider the sequences (%a)y (1), (gs) and (d,) det
" " ») defined

k, = =
0 k’ No= 7, QOEQ7 do:d,

d“ ) k?f’)n + Qﬂy
Fon = Touy(1 + q,_)),
Qn - dfal—l’
14 d,,

Mo =l L

) .
2761:—1 (d”_l T qg-l)’ n =1, 2...

(2.13)

A 4731 < d < 1, which
<11 —a).
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n t ving recurrent relation
I atin the following recu
for (dy) we obalin
1 () 1 Fd-)¥dy — @) + 2y,
=1+ d,- L = gAY ik
: d - - n—1 =]
(2.14:) P
7 induction that
and, using (2.1e) we can prove by induction tha
g } -] tel

] - 2 F [ > I
) o <d = — ——and dﬂé 26271713 for all » i 0
(91:) QH\ dﬂ\ agra &
Y

+V2

whenee ib follows that

™ e
dn < - (2%
(2.16) 5
e G == Qu Ao — L My — ey Ly
N e I I

2.1% ,
( ) 2 (1)7 ,,,’;li—‘,i < ’]',, 12 = (2])2 .

T ], /L', \

for all » > 1. i N R et ity ey
o So, it can be shown by induction that for al =
D0, oek > 110 b

T €8 ( @y, 1)
(2.182) Pt 2

LA € A O )
i w € v, Y) and h A nJ [ = H:J,,l] “/( - -1/
(2.18Db)  there exists Ay € L(.Y, Y) a

(2.13¢) HAul () | < A
S A ol P« ”n ‘S(.’L‘; 71);
: B < k) — g, for all @, g € S(a,
. - 0A (1,’, (.’.U) — (I/)) | & i) ]
(2.184) A, V
) 11— At () [ <
(2.18¢

T M T oo 1
For n 1, (2.18) hold. We suppose thab (2.18) hold for ¢ = 1,
1or /;.,, g
Since, for all j, m = 1

1 ' 1
e : m—
Fpm—1 1 J m‘

] i < oy ) (‘ ’ }_J :
124] f‘ 4/&/ ;;] /l =
2,19 <.
i @O d
AR T gy
it follows that "
' ”‘1 35, < oo S e _,; i /)',
iy = ol < 11 78 B 2t e o)

' 1.8a). - for, 41 1. One can prove

Y r), that is (2.18a) for 4 ==a4-1. SO AT
1101.10]8 m“)+ l'ff);sg' LFd ’12’—11}{? as w(e have plovod (2 8) and (2.10 )
(2.18h ~-e) for ¢ =

Pyiqg — @F == By — A, () g% —
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Now, by (2.18¢) and (2.19)

n-byr—1 (2d)2" 1 - <2d)2”~m i
| %y — 2, I < i;Eu N < W W‘, for all n, =1, therefore
(@) 1s a chuchv Sequenee, 80 it is convergent,

Let g% — hm Zp. From the above inequality it follows that

=

(2.20) law—ary L, (20)"

47 1 (57)2—”, fOl‘ ELH Vi > 1,
L/ =T 4

ok | " a@
M a* — gl < g — Boll -1y — a¥ ) < 4 +

W1 — 4q2)
that ig g* eS(m o 7).

Turther, e brove that g*
be written

18 a solution of (1.1). Since (1.2) can

A?l (a’n+1 iy mﬂ) 5 %F((D”),

it is sufficient to show {;
18)

hat the sequence (|| A
First, by (2.

is bounded,

(2%&HIRAJWNM<HI*AIW%W“H AF(@,) — 1(am) |

S G 1kl @, — g Ily for all » > 1
and, by (2. 13) ana (2.15)

-

. I» —_—
’;'71.+1/ e ==

) ‘V st

(1 Fde)(a, 4@z <

whence, 7),,+m<—2‘ fy Tor all o, m =1,
m

which implies

cO
(2.22) @, — % E 7 /‘L n = 2y, Tor all s 1 ;
m=0 M= 2 -
S0, the estimates (2.21) become

(228) WL — A, 0% )< g . Yt =20, — q, < a2, 42(2(1)2”,

By (2.18b) ang (2.15) we have |45 <Azt I ~—d)", and using (2.23)
THEINSIARINT = aman < 3, o
| [ | L 14q [(‘“d)“

LD s bounded,
= | 2, —&%[, » = .

fl AT -

whenece || 4.1 F(2*) || - 0, when n _ oo, 80 (I 4
Tor Lho eshmate (2. ) let e,
Sinee

( )1( Xy~ a’,"") FP' An ,’F(w*) " F((I)") «_"[!V( 50”)(-’1?* = m-n,)])
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by (2.18) we get

Opi1 S (k—";L S Qn) €y

and, by (2.22)

- it + q = . )
N n tin n)en (’ﬂ n 1
( ) e +1 < ( 1 f)

noly 5_
n—1 1 2d 1‘312 e, — (M 20
e, < (III di) & < o1 ( ) 1 on—1

5t irst part of (2.2). For
i i .20) there follows the firs D )
e Gsmmatm‘% glrfgogé)(fzor n) = 1 there follows | I _,Alf ~(Iao”‘) <H 1</( ll’;d_ :;1 %:
]t-lhe Sec{iﬂgrga’:a{m}q [A,F/(a%)] € LX) and | A, F{(2%) 1] <
ence  exists

therefore using (2.4) and (2.7)

144
@) < 113 Ay < T A,

y, because 4, — F'(o*)-t = —[I — A F(2*) ] F'(2*%)71, using (2.23)
Finally, be > A, —

=
Vi gethg jaidnp—ogt,t(aﬁ?rilgnf)rof)(ozlfr)ld.( 2.3) follows from
&y < dyy €uoyy €1 < 24, and (2.16). :
d iqueness of the solution o, if r< (1_—q)t/.k,e f(())lrllo%.?x ro;)n
he £ ftl}ihlal,]‘slghe operator P(x) = x—A F(x) 1_s{ ,001)1‘b1"31<0 H“II;AOF’( wo()”H g
%1?1635 P is differentiable, | P'(x)|| ?H Ie—:/iol’(a? I <
+ 1 Ao(F'(ag)— F'(@) | < kr 4 < 1, if

(@g, 7).

3. NUMERICAL EXAMPLE

Let us consider the Hammerstein integral equation
Pl s .
1
9
) =—3, 8€[0,1]
(3.1) a(s) — Sstz(m(t))zdt s s e, 1],
0
; = stu?, b(s) = 9/20 s. . .
i nd let H (s, t, u) = stu?, : L ity
e [[OT’%iln]t:' a’the repeateéi ’trapezoidal ruie W(lith hy :0 1 /_N ;11\8/{2 v; éla,p i
N =  =1,..., N— an Wy = N——.rr s W ]
- O’tle, the ’e\l}fgfc%uisauﬁgn@ x(8) i 872 of (3.1) by the solution of the equa
Xima xXa

tion
(3.2) Hs) — 5 H(s, 8, #s)w, — b(s), s < [0, 1]

o
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amount of arithmetic operations for the method (1.2,3) applied {o solve
3.2).

Writing ¢ — S in (3.2) we obtain the nonlinear System
N
{(8.3) T — S (s, s, T)w; — b(s;), 4 = 0, 15m, nar
7=0

Let 7 — (@)Y, b = 0(s)Yo. So the System (3.3) can be written

(3.4) (E) = (1 — Mg —§ — 0, where . py+1 _ RY+1,

For 7 e v seb & = max [Z]. We gee that & jg differentiable
— C<igN

on RN+1 1«:;(93) =I—H"%) and 15" (y) — #(z) | =1 T (y) —H'(z)| =
= 2 max Z&-waﬁ Yi— 2] < (2N 4 1))3n Ny—=z|.

Ogig N =0
In order {g get a solution of (3.4) we shall uge the iterations (1.2)
N

1

and (1.3) with z0) _ — & and 4, = 1 (the identity matrix). In the

f==0
method (1.2) ang (1.3) the Approximate inverse of £ is available and
this facilitates the estimates of the errors (2.2) andg (2.3). But thig advan-
tage disappears because of the need ol matprix multiplications in (1.3).
As in [1], in the numerjeal computations below we use the follo-
wing version of (1.2) and ( 1.3)

(8.5) T — 30 4, p(zm),
(3.6) A = d,_ 21 — F@NA) w0 =1, 2 k.

Thus to compute A F(Fw), instead of computing the matrix 4,
at each step &, we ecan use (3.6) recursively. So we must save the Fréchet,
derivative from all the brevious gteps,

To estimate the amount of arithmetije Operations for thig algorithm,
let ¢; and ¢ he the number of multiplicative operations needed to calen- -
late v — A, and B'(gh)y, respectively. It foligyws from (3.6) that 0 =
=2¢_; +¢ and Since ¢, ='0 we gop that ¢, — (2# —De. If the cost
of computing B(Z) i3 less than or equal to ¢, thep the total amount of
work for the computation of 29, L EW iy less than 2t+1g,

We observe that the cost per step of the method (3.5) anq (3.6) grows
exponentially, but it is important that the method converges quadrati-
cally. So, if'¢ is small compared to the number of operations needed to
solve the linear System involveq ip Newton’s method at each step (espe-
cially for large Systems), then we can make severg] steps of (1.2) and (1.3)
in the time heeded for one step of Newton’s method (for g comparison
of thege methods, see [1n.

The table below contains the resylts of application of (3.5) and
(3.6) after four iterations : the initial estimates for g, d,; the g Priori
estimates (2.2) for | 74 _ z* |, the a Posteriori estimates (2.8) for ||z _

N

@*|l, and || 74 @, where 7 — (%'3: .
i =0
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7 a priori a posteriori e

8 ‘ o \ y ‘ estimates estimales J v~

4 1.32-101 2.96 .10 2.10.103 1.03 .1073 ‘ 6.62 108
16 1.25.1071 2.81.1071 1.82.1073 3.3110°¢ ‘ 4.03 107
G4 1.24.1071 2.78 .1071 1.29.10°8 3.12 .107¢ 2.51.1075

P

5
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