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1. INTRODUCTION

Let I7 he a Hilbert space, I(H) the space of (bounded) linear Opera-
tors on I while L,(H) is the cone of positive (i.e,, non-negative semi-
definite) operators. Let § (e, By H) be the totality of all self-adjoint
operators on I whose spectra are contained in an interval (e ). A (non-
linear) transformation which maps L, (M), the get of positive opera-
tors on H, into L, (K) will be called positive.

Here, we work with positive linear maps. A posilive linear map o
from L(H) to L(I) preserves order relation, that is, A < B implies w(A)
< 9(B) and preserves adjoint operation, that is, o(A%) = o(d)*, Tt is
said to be normalized il it transforms [ u bo I (in both cases, we use only
I). I ¢ is normalized, it maps S (e, B, H) to 8 (e, B, K).

Note that a (continnous real-valued) function g is operator niono-
tone on an interval J if g4) < g(B) for-self-adjoint operators 4 and B
such that 4 < Band their gpectra are contained in J. A function is ope-
rator eonvex on J if

(1) f(sA + tB) < sf(A) + #(B)

for positive numbers s and ¢ with s + ¢t =1 and sclf-adjoint 4 and B
whose spectra arve contained in J. A function is operator concave if —f
is operator convex on J. It is known that it J is operator monotone on
(0, e0), it is also operator concave.

The following generalization of Jensen’s inequality is given in [1],
(see also [2] or [3]) :

Let ¢ be a normalized positive linear map. If f is an operator con-
vex funection on («, B), then

(2) S Te(A)] < o([f(A)] for A €8 (o, 8, H)

T. Ando [3] has shown that (2) follows from the following two of its spe-
cial cases :
(3) o(4?) > o(A)2 for 4 € § (—oo, co, H)

and
(4) P(A7) > o(4)"T for 4 € § (0, co, H).
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Of course, for operator monotone furctions on (0, ), we have the reverse
inequality in (2). Moreover, for operator monotone functions, the reverse
of (2) is equivalent to (4) (%e [41.

Some converses of (2), (3) and (4) are obtained in [6]. Here, we
show that inequalities (2), (3) and (4) as well as results from [5] are also
valid in the case of several maps and operators.

2. RESULTS

It is well known that using mathematical induction we can give an
extension of (1) in the case of several vectors A; € § («, 8, H), 1 = 1
n

Namely, it w, > 0,7 = 1,..., » are positive numbers with Yo, = 1, then
i =]
for every operator convex function f we have

(5) / (gmxi) < Y wfid)
i=1 1=1
Moreover, it'is easy to give an inequality which contains (2) and (5).
TrworeM 1. Let Ay € S(e, 8, H), o ' L{H) - L(I), w; > 0, t=1,..., "

n
with Y w: = 1. Then for-every operator convew function f

(6) "z wild)) < welid

Proof. Using (5) and (2) we get

f (wacpf(Az-) ) < Vwif(ed)) < Fwiplf(4
i=1 i 24 (=1

We now give an upper bound for the term on the right hand side of (6).

TusoreM 2. Let f:(a, B) = R be a real-valued continuous convey:

SJunction. Let A;, o; and w; be defined as in Theorem 1 but with the additional
conditions

(7) O<ml <A, < MI (1 =1,..., n)
then,
‘ MI — Z/LU[(P,'(AZ') Z@U[(Pj(f{[) i ’IHI
50 Ywelf(A)]< =5t (P L - f(3T),
5 1;110 el feA )] M —m Jim) M — m JAD)

Proof. The case m = 1 was proved in [5] where it was shown that
the following holds :

: — ¢ A) Lo edd) —ml
dfA) s ———— S0 T ).
ol f(A)] ¢ =20 fin 4l
Now, multiplying by w; and adding for all « =1, ..., n, we get (8).
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COROLLARY 1. Tt the conditions of Theorem 1 and (7

1( % we (40) < % walid) <

f=s1 1= 1

M o 7
j,M) h{;m 5 A ) Mf(m) — ) — mf(M) I

For f(z) = ¢~1 anq Hz) =22, (9) gives

i=1 M—m
(10) (ﬁ wffP‘(A')) E » m+ M 1 =
) Ay i 477) < & —upti 4
and =1 mM ks mM 2"'1 wipAi)
. =

=1

(11) ( Y, wed, )) < R wip A?) < (M -+ m)z Wl A) — MmI

Further extensions of (10 i
inequalities in (10) and(. (1)1)an$1(11;1)é01 1?, obtatned, oS of the st

e obtamed
THEOREM 3. Let Wiy 04y A, be defined as in Theorem 2. Thep,

(12) ol A1) <« M+ m)
- Bowiarh < s bk e 4))”

(18 Fwg(d) - (z 'l();cpi(A;I))_ < VT —YVimyer

(14) 9 u)l_(Pi(_Az (Jl{ + -’n)

‘ gi 0 4 Mm (E:" Wi Af))

and

(15) ( ¥ ;wl-@z(A%))l’z — Yuwo(d) < H—m)
i=1 ie= 1 4(]% -f— 7/72)

Proof. We start from the second inequality in (10). Thus
szsor(Ai"]) < M+ m r_ 1 ¢

Mm Mm e wipi(4o)
M+ m M 4
A Mm ZM‘Q(A)MW{ 2 m(>1m%A)) N
Y R 212 (M 4 m)
3 zomm(Af)) } o Whchvon)?
(21 4 Mm (gw@ (4) )

This proves (12) which is a Kantorovich
1<0r the proof of (13),
in (10). T '

type inequality.
Wwe again start from the second inequality

Y wady) — ( 5 wg(pi(AFl)) T (U 4 myr
i=1 i=1

b6—c. 1140

) be satisfied. Then
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—{Wﬂﬁ(ﬁwmﬁﬁ”Yéft;ww@UU)M1z<Wﬂ1—WB%

i=1 i

;: )
i:FZ( 7«) < ( ) L:F'l‘( t) - B

f=1
i=1

2

. : M+m"ﬁ..,._m;1}<

L M(E 'M)z’CPi(Ai)) = {Wgé wip Ai) —
4 Mm

1=1

t=1
and yz  om ’
A R — YV wedi) <
(Zl ’&U;(Pz(Al)) :gl
i , Mm
1/2 1 i ) __ = e T,
i —rinr  UNLh L(Ai)

(meﬁu T Ao Wt m 2
R +m IF < LA )

fod e T LI &
(M — m)* I 1 {( Y ’uJ"z<Pi(Ai;%)) A, T B 4 M +m)
TAUM ot m) M tm |

t=1

3. EXAMPLES

or —1 < p <0
T tion f(X) = X7 is convex for 1 < p < 2andfor P
d ccl)rlllga?emf}olﬂ 0 < p < 1. Therefore, (9) gives
an

n Mm? — mMpI
" »n M — dh Wipl Ay) + ————
(16) ( Y, wip A ) <y reldd<—=—— z i
i1 T

1=1

2 k13 , - ; >
log [ Zl.wfcpi(Az)] > 3, wipilog(4,)]

M 1/(M~m) n 10 (mM )l/(M—-m)
(17) log (—91;) iglwiq)i(fli) + log VER

The function f(X) = X logX is convex so we have

" i ; . . wW; Az ].OgAi) <
'ylw“Pi(Ai) 10g (12:1 'Wicpz(Az) ) < ,;gl <Pt(

) [(M—nt)
]'[Ill ll(ﬂl—m) 2 (D(A) + 100‘ (ﬂ )(M )
(18) Mgl—-) Yud(4) +log (™

(W

1=1
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Moreover, We can define the following means of operators ;

Let 4, ¢ 8(0, co, H), 0,> 0 with i‘ W =1 ang P L(H) - L(K),
i=1
1 =1

vy M.
1 owe
Then the ean of 4; of order 5 With respect to Maps o, is given by

7 1yr
(19) J[;[:](A; ©, W) = ()’3 207-(p,-(A;;)) y £
i=1
The following result iy g generalization of Some results from [3, p.32]
and [6].
The Inequality
(20) WA ;5 o, W) > MNA; o w)
holds if, either
(a) P28 ré(—1,1), $¢(—1,1); or
(b)

=1 =82r2; or
§ <—1 <8/2.

This is g Simple consequence of (6). We shall only
the cage 5 =8>1.

(c)
give the proot for

Let flo) = 2y A 4;. Since ¢ <:; <1, fis toneave, so (6) he.

Comes

P=1

(21) (iwmwofr>ﬁwmmo

=1

Since the funection 9X) = sy operator monotone, we get (20) from (21).
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