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This paper deals witl {he numerical solution of the values Pproblen:
for sEff systems of ordinary differentia] equations, Throughout we shall yse

(1.1) 7 = flyt)), o SEST, y(0) = 4,

o denote moblems or clagses of problemg wider consideration. Here
Y(t) is a veal vector of N clements and f, a real-valuyeq veetor nonlineny
function, \ye assume that fis g Lipschity function, Thig implies that for all
initial vectors, g, the problem POssesses a unigue solution for all ¢ e [0, 1.

Stiff problems oceur in many fields of applications meluding chemijen]
kineties, reactor kineties, control theory, dynamics of missile guidance,
clectronic eireyit theory, biomathematies ete.

The essence of stiffness is the solution to he computed is slo wly var-
ying, hut perturbations exist: Wwhich are rapidly damped. The Presence of
such perturbations complicates the numerical computation of the solution.

Bzample 1 : We consider the sealay equation :

YO =290 + g1y 2g(t). 1> % Y(0) =gy, 2 <0~

where ¢ is slow] Y varying as a function of tonly, the solution #(1)is given b y

W) = g(t) -- MYy — g(y,)]

Because )« 0, after g very short time distance the transient, e¥figf
— 9(¥)], which ig also called the 84T component oy Strongly varying so-
lution Component, is no longer present in the solution Y(t). The function
9(t) dominates the solution to be computed on the larger part of the inte-
gration intepyal [0, 7). The explicit Ruler method |

Yot = Yn + Wfya), m = 0(1) 1, 2gp — p

is damped only if — 9 —p5 <0. This condition of Humerical stability
imposes a severe restriction of the stepsize & if » < 0, even when Yn—
— g(t,) i negligibly small., This situation i typicaly when we apply an
explicit lineay method to a stiff DProblem, The stepsize is restricted by nu-
merical stability rather than by accuracy.,
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Baample 2 : For the general lincar problent
y'(1) = Ay(t) 4-r(8), t = 0, y(0) =y,
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g ifferent; sol
on the eigenvalues of A. Dfﬂ;l] (\Tﬁuz?s
Tacobi atrix possesses eigenvalue ‘ N
"[’ (‘I;J(‘l)ldli X A dclimte these eigenvalues. Then (1.5) may

| lii) 131;81'(: e By B e < X i % | is small when compared
(ii) there exist A, of moderate size, 1.(;.,. | % ‘(i)‘?’
e ) . 3 1 j »
Aith the modulus of the eigenvalues sat}:‘yéng;eal ’part;
A ."i) no X exist with a large‘ posi 1v1 P s Bal ) < 0.
(1"1' 1no )\f exist with a large imaginary par e onm
It1 fn(Sls,Vu)med h(!are‘ that the forcing term #(1) is a8 sSmo
[ i3 assume  tha 1
i in the solution.
ing expounentials in : L
ng Slt)iffness for a nonlinear proplen} is u:s;llzlbm)e o
icenvalues of the Jacobian matrix. The arg -
f‘li;a:tion. Dlems are also called problems wit_h large
iy St i })11 & plgélll)‘:ar(tv of thoes is the presence of alarge
it ants, because the 3
Lipschitz constants,

classical Lipschitz constant
TL = Tsup. | flw) | > 1

i ; is that it should have
a g stiff method is thz‘nt its ,
emen?l‘lfl(ércﬁlf’(%%% ;t’l absolute stability is connected

ution components oceur “’]‘1&% t{:‘e
which ditfer greatly in magnitud .
be called stiff i

deseribed in terms of the
is based on local linca-

The main requiret
strong stability properpws.
with the scalar equation
(1.2) Y1) = (1), Ne Otz 0, Y(0) =Y,

(o predict the sta-
: imple, its us , model to predict the s
o i uation is very simple, its use as a model b e
rl.hﬂ_llg{: ﬁiﬁiiﬁ%ﬁa&(}ﬁlﬁn‘erigal 111(_31)11’0(,118 for. general n(;n;:)nem sys
b:ql:stgté; method applied to this test equation reduce
one-ste . _

o h N
" Ynpy = R(z)y,,
(1.3) { e ccvcud beolutely
. b thod is said to be absoluic
X fo : tability function. The metl ta w which satisfies
\gljsie(ﬁzlz (gilllfe%(gl'&éﬂaz)g 1 1/3();” <L The ?’e‘; .:’t &llg]_;(?;nt;fﬁ g;];lcll:alf_p}a.n(-_
stable o P bsolute stability region. hod g said
: ; salled the absolute st - thod is saic
this requirement is cal _ . tability region, the met ‘
; ) ined in the abgolute stability hag the correct
Eoe) <0 18 donraie 3 hich ensures that the method has 2 ;
oL ik j 4 Then, a
to be A-stable. A condition whic nfinity o lim,, _of(2) == 0. 1 Wl
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the use of these was on the grounds of the amount of computational effort

required to solve the resulting systems of algebraic equations. i

Research into finding efficient stift methods has followed some main
directions : -
(1) inside the Runge-Kutta class, the investigation of the use of
transformation methods to obtain a solution of algebraic equa-

tions in an efficient manner of the derivation of different clas-

ses of implicit Runge-Kufta formula which do not eall for the

_ solution of a system of simultaneous equations - '

(2) the generalization of linear methods by formula with high deri-

: vations, cyelic and composite methods, hybrid methods, pseudo

_ Runge-Kutta, ete.; - y

(3) the construction of nonlinear methods such as that of rational

~ Runge-Kutta, type (see on this subject an author’s Paper [12]);

The aim of thiy baper is to analyse the possibility to replace second
derivative multistep formula, by hybrid methods with same stability pro-
perties. We make a first step with the Support of one-step methods, Tix-
amples for some clagses are given in the following sections. .
In section 3 we deal with second derivative methods and in section

4 with hybrid methods connected to those. We examine carefully the sta-
bility properties and the performance. Our burpose is to derive A-stable
formula. Finally, in section 5, numerical comparisons of some new methods
with the classical ones are given. The efficiency of the new integrations ig
demonstrated by solving a series of challenging test problems.

2. BACKGROUNDS

One-leg methods were introduced by Dahlquist in 1975 (see reference
[7]). The characteristic of these jg the presence of only one value of f in
each step. This made possible a certain theoretical stability analysis for

stitf nonlinear problems (G-stability, contractivity). Kvery linear k-step
methodl

k : k Ty
Z Sty eyl 2 B’b'*z'f"'+1—57 Jaus :.f(tn -+ ih, Ynyi)s Z Br—i =1
e ha =0 .

has a ,,one-leg twin”

& 4 y
e Z He—tlfni1-t = hf(z Brlddniies, E Bk_i?/n.u—z')
F=0 i=0 L0

The point in which the funetion is evaluated is named collocation poind,

For linear autonomous problem the one-leg difference equation is
identical to the linear multistep equation, Hence, the stability regions are
the same for a linear multistep method and it one-leg twin.

It was realized that, for fixed step size, the one-leg implementation
of the equivalent linear k-step method would be advantageous with regard
to storage economy. For variable stepsize, in which cage they are not equi-
valent, the one-leg methods seem to have Superior stabilty Properties, in
stiff problems. On the other side, Dahlquist methods are particluarly
easy to apply to implicit differential equations,
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The disadvantage is the decrease of the maximum order versus the J in the first equation for fu:

multistep formula. In [7], Dahlquist shows that the maximum order of a _

one-leg formula with & steps is & + 1. Therefore, in the case of one-step | i g 1 h A sh

method the maximum order is 2. ; L (10 " JFSly
Second derivative multistep formula. Iteration schemes that have |

been proposed for stiff equations are usually based on a modified Newton-

, o 4
; : : ; Yorys = Yner + — y, — E@f ’
Raphson technique. The usual predictor-corrector iteration scheme i8 | 9 9 o fre

not feasible since | k df/dy | must remain small to ensure the convergence. | (2.5)
Realizing that the Jacobian matrix might be used for th?. .iteratlun scher}'le,

Enright in 1974 (see reference [9]) consider the possibility 9f dex:falopmg P W ass & af

a class of formula that explicitly uses the Jacobian matrix. Since ¥"' = (df/ | = — o ( Fr e 4 o ) (W(L) + 0()

mentioned author considers the

dy)y’ for autonomous systems, the above-
ol i The formula certainly is L-stuble and of order 3

following class of second derivative formula : priuul ;
& derivative cal Sig T . |
/. ¢ P i | W i d point. aleulus is replaced by a function evalus, bion in & new
Y, tYnyi — by, Bifust — B2 Y Yifast = 0y Joas == Just forty Jusr = Hg—/ (¥ns1) Highest order. Tt is ble t
i=0 i=0 i=0 ! , . 2018 possible to derive a second derivati ‘
upper order that 3. Obrech , 5 - erivative method with
(2.2) koff’s forrmula is of order 4,but it is only 4-stadie -
: g S : 1iti i ili h B2
If the coefficients y; are zero, except for the lats, the condition qi stability Yors = Yo 4L (1 ok, ’
at infinity is ensured and the maximum order of the formula with steps g 5 (Jugr 4 fu) 15 (faer —S2)
is k —I— 2. (26)
Bxample: For the one-step case, the method is L-stable as well and
of order 3: i W@
o= — Y A
72 720 A (y(t)) + O(1)
2.3 Yuss = Yo o s I — = f N
R e - — P o fn) T TS 4 [ N ay . K /
(2.3) Yurr = Yn 3 1 T 10" O c:}’?;;i;ﬁsd 1 Is 1(5 possible to build up hybrids methods of order 4 similar
only m;e e 'Zic-iiefomé derivative Jormula 2 Presserving the co'.;afvemicm?' Z}“
The local trancation error TH =y (lnyy) — Y(t) 18 " properties? P “quairon to solve vn y, 4, is it possible to reach betier stability
rt d%f Expenential fitting. The idea of using exponentially fifted £
B e 72 ar (y(t)) + O(?) _}']'?e 't?IJPI_' oximate numerieal integration r?f {g{tal:‘{é;?iutgglifefsﬂgfdti%‘n}m% o
f:)a;;;lltfﬁnggtegnSldel;fable attention. The basis idea is Ln cllm‘iv: ’;nt;;lb;ﬁggg
. . . . . g ., ‘ ' b n‘ ) ‘ee ars 4 . ) ey 4
Problem 1 : Is it possible to bu-zld_szm@lm one-leg ]‘ormuZ‘a for secf)nd gration, and ﬁlel]lllgcht?:;el?l-llgl‘f:@tf—f:% Giimr thaall the steplength of inte-
derivative mult@'st;p methods? How great is the loos in the acewracy order of function satisties the in tt’g‘l‘wtibﬁ if:;l?illllﬁbe(::"ui?] Lh?g & given exponential
, y at ST VR S N o @& exactly. It needs t o a9
such i fmmu’la. - ! el ! zed that exponential fitting is really applicable to Dnlio'dk]‘to _,IJO emphasi-
England’s hibrid method. England (see reference [8]) gives a pa stitt systems, i, to systems havine AP oAy W ang & limited class of
tial answers to this question. He built up a 0-class of hybrid methods with slowly varying, with ail the E‘-igenvajfuég tof )l‘LI‘;(}},n; LEJSS{L ;s lm' some sense
: 3, lying in twoor

fewer clusters. Howe .

b3 BT, 0 g " y 4t .

o s \\IVOV'?I,JE{:)I. Systems for which exponential fitting inte

- ormula are substantially more efficient 1 : ara
When the method i T icient than conventional ones.

llowing form : yvaen tne method is applied to the tes ion, the annroi ;

ipLoing : error is related to = © test equation, the approximation

30 —1 30 — 2 h ; g
L | EUt P h——— ooy ——— In / — _ ot
Yns1 Yo -+ R 60 f + 60 — l)f +1 69(0——1)f +9 T(z) £(2) €%, 2 = hx

the same stability properties as those of the Enright’s formula.
Example: For the one-step case, the methods of order 3 have the

(2.4) g oo _
I for some ¢ —= ki, we have T(q) = 0, then the numerical solution of the

test equation is exucl in the discreto meani, i

! xact 11 ¢ diserete meaning. If ¢ is a zero of -
Ml e ot Wt ) s oxponenia i of ot s - 5
80 ¢ > exponential fitting points are icest o Tos

plied by the st{iJPSize. 1t LUling points are the bigest eigenvalues multi-

Yoo == (0 — 1Y%y — 6(6.— 2)Yny1 + BO(6 — Dfasr

The particular member taken into implementation by the author of the
above mention paper is in accordance to the condition of a zero coefficient
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] ¢ Pseudo Ru-
( en’s formula., Pse . ‘
¢ 3 B()}x]lﬂll\ CI1°S ; P
S -Kutta methods. . L A
I’.seudo-liun,(]o alization of the classical 1 b the
ge-Kutte ‘ocess are generalizati clagsion gt o T
meee L p';SOLkO]qlz)ven ]'?1 1980 (see reference [1D (1050}1)1)’()1.UM s hmdwe
; y ‘ g ) J n £} ' 2l . A Y
T 1121]-1116}3]» Ooabuthor Implicit Iindpoint Quadraiure IFo |
named by th ’ ]
the following form :

& .
= ‘ ! i 1(1)8
3 bike, ki == (1 —0) ¥ + Oiifyy - 1o 2} il
(2.7) Yuyr = Yot 1 3 bikey I - P
) i1
A u ] ‘der ¢ itions. o
S ished the order conditi 7 o BT
; ante author established t RS mAILE ST iy
“rilny S(m;e ;l L}Cmouw other formula, we bICO some A
Bxample I : 2 g HEEA e b
3 ’Llldbf alele formula of order 4 is the following
L» [d K

2h
I - - 1
Yurr = Yu + ‘(; (fusr A fa) + 3 fm;

o, £
1 _— Al vy Il)
Y, = 2—-(1/“1 -+ %) 3 (frr =/
(2.8)) oAy @ _‘_Uf) (y(t.)) -+ 0(n)
TE = — 7&%(’_"[ dt® dt )

n/? ;,; l or orcer ¢ 21ven '].l]l 131[1] ()“(J‘\t(ll) S(}llellle all(-l .
3 are ! g‘ ) s ]
La:a/} )l@ . . (1 (48 s

h ,
[ asr = 90 + = (o + fir),
1 R 2 )f '3 -i— l"ﬁi
s 43 R G_S_‘ﬁ,oz.-
92 -+ de + Yo — Efll+1! L G G
Yuro, = T ) G g
" U3 h
L 4 — V3 Ya + rd _J V Y1 + If”
?/u+02 - 6 * 6
(2.9)
TH = —

Bt (f”:ﬁ”ﬁfﬂ

) (3(t) -+ O(k?)
24 i

ar dt

Y A R FLE ] o Gt ] |
3 INE LE % [ E RAMUL/

i rati mula
We consider the class of integration form

(OLS 1) k k B )
; : I i—it +1-1 —iYpyr1~i 1 —
Y Y — hj(igo Br—ilyni1—s, EO
70
%
h? o N Yk—-T?/ﬂ+1—i) =0
11 ’5’ Sfl’ (’é) (k—iby 411y lg()
5 -t = 1.
where Yoo vice = Yo, Be-
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Order, A statement, about, the order can he proved similay to 1]
for one-leg methoqls (like in [T]).

"ROPOSTIION L. The MARTINUM. 07y of a e
there aye oy least s + 7 distinet methods qwit), thi
One coeffioipny Bi 43 not zepo,

; introduce operator nutation

1at

thod (078 1 )As 42 4 rid
S property, 1oy these vily
Proot, \ye

3 &
E Cr—ilfu sy, TYn = E

P20

PYn =

=0

%
B/.-q',"/nﬂ—z‘; Y = X \;/I;‘l'!//z,}.l‘i

le=()
liation CIror operator T

The differen; and the interpolation CIror 1, are

APRYS . , dh?
(Lao)(t,) = PHl) ~ ho'(ot,) — 5 9 Crta)

(Lio)( ot,) — o9(tn) — o ot,), (L' 9) (vt,) — TU) — oyt
wlisa Sufficjently

where "hen, the Ioe

Smooth funetion, 1
is

al tr uncation error

/ , y VN
f/]/(i") . IO-Z/(/’”) - ]I,f( Glay G.Z/(tﬂ)) \Tf’(“/tm Y.?/(fn)) =
= (L(lj/)(tn) -+ ]Z[j( O‘I‘n, _7/( Gi,,)) %‘f( o'[‘”, O‘.Z/(l‘,l))] -+ i;ﬁ I__f(]’{n, j/(yt,,)) -
\f(y'[‘n, Y?/({n))J ~ (I/

'/?/23 17 Y
I ‘2‘]( (th f/(‘l’tn» (Lz']/) (Yt")

rly)(tlz> Y IZJN( at,, :(/( th)) (I/??/) ( Gtﬂ) *

It

Lo = 0k), Lo ooey L8o=0(hn), 1y, O(h2r)
then

P = Illin{])(l, 1, D2 -+ 2}

Dahlquist shows in [7] that

maxp, = {Oo it 3j: Oty = t“+1-—77 0 SJi<k

%y otherwige
A similar gt

‘atement; holdg for
methods, Then the

Py It p = 4
= L. If we note (

2 = 2 We don't hgye 2 one-leg
Maximum ordey i obtaineq wWhen p, — o and p, —
(ty,; — Yl)hy p, is Mmaximized when

(0('}'2'-.,)

1
> tn+1—¢“°,(tﬂ+1-i)

Y- 0) =
{vt,
For each J we have J;

o) < I (1 —s,,

+ 2 free Parameters . 0, 3, %y .ty oy Inm these cop-
ditions, may Pe=Fk 4+ 2 and, in conclusion, max p — -+
the linear System of condition for order p, — ;.
tion,



204 Dana Peteu ST

Oue-step method. We study the particular case of the one-step for-

male with minimum order 2:

14w 1—u u {140 AL =
y~+1:yn+7'f(——2'f Ynyr T Ty) h* —;f ( L Yap ’2~—?/n)-

p]

Wazimum order. We note that it is possible to eliminate the O(h?) ter-

ms from the truncation error by choosing w =1, v = gor w=—21, 0=

1 S ! V) .
& Then the formula has the optimal order 3. One from these iz the

3
following (for an autonomous system) :
w2 1
(3.1) Yapr = Yo + WY — (T{ Ynpr 'é*Jn)

, T dEo Cdf N\, ,

v = — LT e —s( L) rlen + o0
72 t dy;’j \ d]/) /

This truncation error is comparable with the error produced by Enright’s

one-step method.

Stability properties. In order to examine the stability properties ot
owr formula, we use the maximum modulus theorem. Applying the method
of order 2 to the scalar test equation, we obtain the stability function
1420 —mn)f2 — 22u(1 — o) /4

T — 21 + w2 + 22l + 0)}

R(z) =

We notice that | R(ip)| < 1, ¥p e Rifand only if v > 0. Under this circum-
stance, the requirement that f(z) may be analylic in Re(z)<0, i.e., that
there are not zero of the denominator of R(z) in the left complex half-
plane, is equivalent with > 0. The inequalitity lim.._.| B(2)| < 118
reduced to v> 0. Thus, the method is sirong A-stable if and only if w=>0,
o> 0 and L-stable when v = 1, u > 0. The method of maximum order &

is only strong A-stable.
One-leg assoeinied to second devivalive formula. If we consider a

socond derivative formula of minimuain order 2.

(1 +a, 1—a S0 +e b —a ,,
= Un + 7"’*’;_ ey [T, T fi%) Ny 7"2'{ /Il — AT 5 ] *]n)

Yoy

we cah associated a twin formula of the new class with the same stability
funection for w=a, v=>bja. We exclude the case of ¢==0. Thus, if the second
derivative method is L-stable and order 2, we can associate to it a formuls
(3.1) also L-stable and of order 2.

Baample : Tn the particuwlar case of the 3ihi-order Fnright’s method and
for an auntonomous system, the associated formula is of order 2 and ha?
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the following from

(3.2) Yngr = Yu + 7?1‘(z Ynir 5 Yn| — Ef’(?/f )
3 3" 67

The error produced at each step by this method is

mp }]"3 de .
TE — — | —24 {2 _
9 (dy2 I )(?/(tu)) + O(1%

bt In 1}{}1g avboz'e ClaSST?f lfntlathods the maximum order is obtained when
y one By is not zero. The following class of meth i suf i
on 2 class of methods does not & r 1
ony ono P ot suffer this

k

k X .
OT:8 2)I Nyl ) ey P .
( S 2) r:gogk Yusgr—i 71.§0.3/;_1fn+14 5 f E Yi—itnyq-1, Z Ylt—f:’/“Jrl—z‘) —0

=0 =0

¢ MaxImmun or d_ S als P —I_ v ere }1 [ ee l arar Cl I
. A ) 3 bu 1h . are Jx T
[ l 3 1Y €1 l 0] } 2 l ] g hara t S
011 2=S ] b 1) ¢l 1} ace lll lle 1€ ‘el) b \ can wirite
) 4 O

1+ u

i : 1 —u
Ynpr = Yn _'— h (——2*](;1_}1 —}"—2—],,) —

(3.3)

v'u'./ 1 L_q) 1—®
— hlré—f (-% Yo +—— -"/")

iy Order. UllfO}‘tlll'latelbfz it is not possible to reach order 4 with such a
method, but the formula of order 3 forms a class depending on a free para-

meter sinee the unique restriction is wv = 1

. _Stalnh’i]/. The 4- and L-stability conditions are the same for the above
mentioned class, because the stability function is the same. If tﬁv froe/
parameter is chosen in such a way that the method is stable at infinit?l
we get Enright’s one-step formula. If the free parameter is cosen for -
ponential fitting at ge (. = {z e O] Rez < 0}: R(q) = ¢, t’hen' i

U = W = — — Jf(¥(]2 + 6g— 12)¢" + ¢* - 6qg |- 12

Ghilr (7* — 20)c" + ¢* 4 2q

Tnrioht g . i ; Rl = o
Inright’s method can be seen thus as an exponential fitting to —- oo of the

formula in discussion, because lim,, ,u(¢) = -—. The exponential fitting
to zero is not possible sinee limg_ou(g) = 0. It is easy to verify analytically
that the exponentially fitted formula is A-stable for any ¢ e R* becanse
w(q) > 0. ) ) e
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4O HIBRID METHODS

We pose the problem to fing new hybrid methods which can replace
the Jacobian, which is neeesary to caleulate for a formula of the above
section. We seareh for a scheme with the follo wing form

T4 . . L—u
Yuer = Wu A+ o= W (g4 (1= w)y,) 4 = 5 Mfuso
(FIM 1) \ I |
Yngo = Whuyg —+ (L = )y, 60 2 ot ) g s o (0—w—a)f,

The tirst equation is known as the quadrature formula and the second, as
the interpolation Jormula. 7 . '

Order. The maximum order of these schenies is 3. 1f we take into ac-
count the conditions of order 3 for (he quadrature formula and of ovder
2 for the interpolation formulay the hybrid scheme preserves the order 3
of the quadrature formula. We get two classes that depend each on a para-

1
meter ot the second equation. The coefficients are given by « = — o
2 i o) s : ond  case v =1
== — —and in a first case v = 0, 0 =-0vn a second case v =1,
C I B

b

0 = }-, where w vemainy a free parameter. The coudition of order 3 for
(.

the interpolation formula give two methods with the error coefficient equal

o .
to that of the quadrature formula. One, for 0 = = iy

3
ho . 3h
Yugr = i F ;Z*]Lu -+ %fﬁ+2/3a
20 7 4 2h
9 :‘_':.—L—Y'n-“'_”u_ + —fu
Ynaios o7 Yne1 7 27./ o7 J +1 7 o7 Jf

74 3 _
1H = il (ﬂi) (yta)) 4+ O(h*)
216\ de?

. i R T Aol T N - -
The local truncation error is lower than the one of Enright’s one-step fo

. ] 14
mula and for some system functions J5 lower than the oue of Tngland’s
nethod.

Stability. Strong A-stability takes place, in the first case, if w > i

and, in the second case, it w > — . Thus, the above method is an example

of strongly A-stable class member.
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Llxponential Sitting. 1n the cage ofol‘del‘z,tho Iree parameter ¢ ey
be used for exponential fitting. In the first case we gel

L (q2 = G)et L 992 ' 3 3
w(q) — 4 %7 Lim w(q) — 8 , Um a(q) = =
V200 et 2g 7 o B RS

and the formula ig strongly A-stable for any ¢ e R* In the second casge

24 60 — 24)ef | 5g2 41801 94 5 1
(_{MIRM{W, lim /10((]): J’ lim q/u(q): 2%

1
W)= " : 'y
£ 9 (¢* — 2q)¢" + @2 - 2¢ 1 =0 9 2

Also in this casethe Corresponding formula iy strongly A-stable for any qe
e Ii*

1f, instead of the exponential fitting we put the condition of stability
at infinity, then we get two methods. Oner ig ingland’s one-step method for

D : . LS : .
W == o and is the last formula, exponentially fitted at — oo, Another, in

>
A

S ! { .
the caxe § = =, 4 — © i also a formula exponentially fitted at — oo
9 )

[

h 3h
Yny1 == Wn -+ Ifn -+ Tf.w.yz/gs

‘

3 1 2h
Yniorg = 3 Yngr - o Yn — ‘?fuarl

4 73 DY
g A (L’i o @ df

di? dt? dt

o ) (L) - O(15)

Thus, the formula is comparable with England’s one step scheme and
Enright’s formula. It is a better alternative than (4.1), because it has
the property of L-stability. Formula (4.2) is also included in the O-class
described by Iingland, which successfully replaces Enright’s method and
containg only L-stable methods.

tingland’s 0-class contains all L-stable methods with the minimum
order 1 in both equations of the following formula clags

Vo= Dt
Yorr = Yn+h (_——i Jopr + I e fn) — hofag
(HM 2) i ] .
; — w42 — W —
Yngo = WYnyg + (1 — w)yn + b 2 z o+ h 2 el »

It is easier to see that for this class theve is an increasing in maximum or-
der of accuracy versus the class (HM 1). The conditions of order 4 lead to
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Bokhoven’s formula (2.8), which has the same stability function as Obre-
chkoff’s method, thus it is only A-stable. '

To improve the performance of Bokhoven’s 3"-order scheme (2.9),
we study the class ;

14 u 1 —u
Yng1 = Yn 4+ 1 '—;—‘ w6, + hTf'HUz

h h
{Ynvoy = W¥Ynyy + (L — )y, ) (0; — w, + @y )fnyr + 0} (61—w,—@))f,

. h h
Ynto, = Wiy + (L — wy)y, + *2* (6 — w, 4 @) fuir + E (ez_wz—mz)fn

(HM 3)

Order. If we require the conditions of order 3, the methods depend on
three free parameters : Uy Wy, W,y

1 Y30 —wp 1 V30 —w?
_ — —_—, 0 = &= == s
g 2i6(1—f—u) L 2:F6(1—~u)

L - 2u 2u — 1
By == e Wy == —
6(1 + u) 6(1 — w)

Stability. We consider the case of order 3. The stability function is
the following

- e : p T
Rie) — L0 — 202 (13 t)zz,t~1+uwl+_ u

= w
1 — 2 — (1/6 — t)e? i

1 :
The condition of strong A-stability is t > i Bokhoven’s method of order

1 .
3 is only A-stable, because { = % . When t = e we get a class which de-

pends on two parameters (for example w;, w,) with the same linear stability
properties as Enright’s method. If we take into account the case w; =

2 . ; X ] ; o om SCA R
= Wy = — , then v is a free parameter and it can be chosen for minimising

error.
Egample 1. In the case of I-stability, if the parameters are chosen
such that all equations of (HM 3) are of order 3, then one of the solutions
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is the next :

2 3 2|3
[?/ﬂ+1 = ¥Yn + +thifn+]/3—/3 + V hif:z—}/§/'3
23 2l/3 3 . Al 2/3 -
1Yoy = ( —‘g ')?J-n+1+ *g Yn — L (V3 — 1)ifu,, +*V3 (2—V3)hfa
9 9
23 2)/3 FnL 23 -
YuVaps :(1 = %):I/m _¥ Yn — %—(V3 + L)hfus— %(2 +V3)nfa

(4.3)

ht d3f
TEH = — 22 (4t ho
72 a1’ (y(tn)) - O( )
This method is an important one. We observe the identity of the loecal
truncation error and of the form of stability funetion with Enright’s
method. Similar effects with the classical one-step method are obtained,
but the evaluation of the Jacobian matrix to each Newton iteration step
is replaced with 2 function evaluations. Tere we did not find in the form
of the local trucation error gome perturbations produced by the interpo-
lation equations, like in Bokhoven’s one-step method.
Example 2. For such methods it is possible to reach order 4. The
unique method is the following :

h h
Ynpr = Yn + E fw+1/2+V§,’6 -+ _2 f”.;.l/Q_VS_/G

1 2/3 1_9)/3 b1 V3 hi1_J3
s P e (150 L B A2
(4.4)

_ W (A . adfaf
T8 = -7 (&4 5 ST AN | e
4320(dt4+ e at )+ o

Analysing the stability function, we can see that this is the same as for
Obrechkoff’s formula,. Thus, the method is only A-stable. We observe that,
for the majority of the system functions f, the level of local truneation error
is lowest than the one of Obrechkoff’s formula or Bokhoven’s scheme (2.8).
The computational effort is the same as for (2.8).

In Bokhoven’s scheme (2.9) 3 function evaluations per Newton step
are needed : in g, Ynt0as Yuir. One step needs 3m -+ 1 function evalua-
tions, where s is the iteration number taken to solve the implicit equa-
tion ; m is relatively small if the starting value is good.

We now consider a different class for which 3 evaluations are also
necessary :

{y“-l:l = Yn + ah.’f(uy"+1 —l_ (1 e u)yn) + b7if(?/1z+e) —l* G]Lf(?)]/,”rl —{— (1 — U)g/n)

Ynro = Wnyy + (1 — w)y, |- haf(uynyy + (1— W)Yn)Fhef(vynyq4-(1 —)¥fn)
(HM4)
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Order. The conditions of 3-order are -
a+bAdc=1, 6 =w4d-+e, 02=1w 4 2(du 1 ev)

1 1
yau? b2 4 e0? = = qu 4 002 4 or = -

at 4+ b0+ cv =
-3 3

ro | =

Under these circumstances, a formula of order 3 has three free paramet ers,
wy v, 0.
The local error produced by the quadrature formula is

- W1 a3f 302 — 40 1 1 Jf
TR, =~ 2 [ = gV &L g2 e 8Y iy )
! 36[( )dtS 02— 0 f] W)+ O0r)

To this is added the erorr produced by the approximation of 4,4 with the
integration formula

e, azf
TE, — T el
2 T 35 [(( )

(_l{’—F’D—l)()_ [6(0%2—0) 4 1 Juv _(_]I 2'“ C_lf / »
050 (d;?/) I) dy f] WBISmOE

We observe that the error formula introduced by lingland’s one-step re-
thod is a particular case of the above. The advantage of using this class is
the dependence on more parameters and the possibility of formulato reach
order 4. The method of maximum order in this class is Bokhoven’s
formula (2.8).

Stability. It we impose the supplementary condition of stability at
infinity, the new equation is

dl —u) el —2) =0

Then the coetficients are

1 1
D_E v — 0 Y
G Ty, 6(02 — 0)(v —u) T w—w +
w — 0 1
Jr6(0 0)(w—nv)’  6(02— 0)
i Lsnl BB, @), 1y (OO o) e g
v — W — v

15
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where 0 s the solution of the equation
[6ur — 3(u + v) -+ 3192 — [Gur — 2(u 4+ ) - 210 - yp = 0
'L Y &) AY &3 . T
hese methods, depending on « and 0y arve all L-stable hecause the stability

ll“(tlo“ l\ 111(‘ S ( 1 l ( 2 - NS
) ¥ SANC a8 t la O 1 ) 1 Nt !
- None ()(l b l(l /h ] g J

Wranples

1) 2w = A PTI  B. y : A
) Oy 0 =1 or g =1, ¢ = gives the Iingland’s 0-class ;

2) v =0, 0 = T gives a class of formula depending on y
3h /
Yugy == in + *f,u/; T X — [y
(1.5) :
8 1 2h
Yyory = — Ynyq + = 0w = f(at, i 2=k
Iy 9 Yrniq 2 9 v ™ .[(“.’/NH T (L — U)ifn) + *(W’)*./lw
radf dzf d
/1711 _ (ﬁ,_ r _§Z ‘([ _ IS ([f 5
‘)10 dt3 T2 dtz i S (71/- /2 (li) ) o+ O09)
Forw = 1 e get scheme (4.2).
e i - :
3)v=1, 0 = T gives England’s one-step method ;
4) W4 v =1, then
V3 5
T YU G T
G(u — 2) 6(u — vy
ot -
1 2 2
W=-—4 0, ¢ = SR I —
6 T — U — 7

The local truncation error is

170 /14 V 3 d3f
1F = — _t__(%v G o asf
36 [_ 6 \dt3 u(1 o g{‘f

N(Ln;ﬁ)ﬁﬂ
2

6 ) ar dg,f] (y(ta)) 4 O(h3)

If we consider 1 — 6u(l — ) = 0 and it by convention ¢ ~ z," then for
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4 = 1 == _]E’)the formula is the following :
6

2

Lot Vay },_E). ,,)i
:}:—2—7{]0((72 + 6—) Yuy1 -+ (2 6 y
1 ] 1 _.:_i 1 + (} —i—-——;")fn)
e ’j((’Q‘ = 5 )./"+1 9 6
(46) - o V:— AR V::);
Vorlo¥T = (E i‘s’) e T ('3‘ ?)“ h
1+ V3, (1 V3 (l_Vi) )
o /f((2+6)yn+1+ 5 Yn )+
V-1 (1 U3y LE))
-+ 12411]"(((2- " .'/ﬂ+1+(2 l p Y
o VR @@ Y 8T VB & df ) ity + o
v — 5 V(0 LYoy + 2 ke 3, 7)

which for some functions f may produce a lower error than the one of
Enright’s one-step method.

5. NUMERICAL RESULTS

We have been testing the following schemes

abili Minimal effort per step
¥ \ I the scheme Stabilily
Nr, Name o o
(2.3) — Tnright’s sccond derivative l.—stable 1 FFunction, 1 Derivative
{ormula ) . i
(2.5) — England’s hybrid one-slep L—slable 2 Funclion, 0 Derivative
3.1 — ;l?(l)llimcelass (01.§ 1) stongly A—stable 1 Function, 1 Del‘ivali\jc
(4'1) — Jrom class (LIM 1) stongly  A-slable 2 Funcu'on, 0 Derl'\'al]_\-c
24'03 — from class (M 1) L.—stable 2 Ifunction, 0 Derivalive
(4-:3 1y — forf = 1/2-]*]/3'/6, {rom I.—slable 3 Functlion, 0 Derivative
class (IIM 4) ‘ . o
(4.6.2) — for 0 = 1/2A]/§/6, {rom L.—slable 3 TFFunclion, 0 Derivative
class (HIM 4)
Order 4 B
(2.6) — Obrechkofi’s second derivati- A—stable 1 Tunction, 1 Derivalive
ve formula g=d A
(2.8) — Bokhovenw’s hybrid scheme A—stable z 1<‘t111cL1.01], 0 ],)01‘%\1al].\v(i
(4'4) — trom class (FIN 3) A-—slable 3 Tunction, 0 Derivalive
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These formulas have been implemented in a constant stepsize method.,
The above methods suppose to solve somo equation in y, ., :

F( Y +1) =0

where I depends on the chosen method. The iteration scheme adapted
to solve the implicit set of equations is a modified Newton-Raphson tech-
nique
lm(?/n)(/’ %’i_—ll) o 7/:(;)) o Iw(?/v(ti)% T > 0, 2/5031 = Uy + hfn

The starting value is given by the Huler explicit formula.

The numerical process consists in the following stages at each step -

Stage 1.1. The evaluation of the specific linear matrix system F'(y,) =
= I — ahdy - bhAJ;, with specific couple (a, b): g =— 2/3, b =1/6 for
(2.3), (2.5), (4.2), (4.6), @ = 5/9, b —= 1/9 for (4.1), ¢ =1, b = 1/3 for (3.1)
and ¢ =1/2, b = 1/12 for (2.6), (2.8), (4.4).

Stage 1.2. Bvaluate y@,; ¢ = 0;

Stage 2.1. Compute F(y$D,) ;

Stage 2.2. Solve the linear system :

(0) the decomposition LU — '(ya), U upver triangular matrix, L

lower triangular matrix ;

(1) solve the system Lo = — F(y$,);

(2) solve the system Uq — z;

(3) compute yiid =¢P 4 @, (-7 1;

Stage 2.3. 1t ||d|ly > tolerance and if the iteration number exceeds a
certain limit, then Go To stuge 2.7.; in the opposite case,
if the maximal number of iteration steps has been over-
passed, an error mesage is printed and Jinal step, otherwise
continue ;

Stage 3. Bvalaate function at the approximation ¢§), necessary
for the following step and store the values and the Jaco.
bian if the method agks for it.

fMinal step. Conbinue with the next step.

The efficiency of the methods has been measured by independent
machine statisties like the number of function calls y Jacobian evaluations,
and mabrix inversions.

The numerical results appear in the follo wing tables. We have noted :
xwl = the function evalnation numiber, 2z ==the derivative evaluation
number, x2S = the number of linear systems solved. By* we have indica-
ted the method with the lowest error for a eertain choice of the step and
component system.

The comparison was drawn between the exact solution and the soiu-

tions given by the methods for each system, ab the point ¢ — 1.
' The number of iterations depends on the chogen steplength. The
stepsize is indicabed in the headtable. The possible values are 0.1, 0.05 or
0.01, depending on the required condition of conv crgence of the methods
in discussion.

The following testing systems are known to be stiff .

5]
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Y(l) = e?

System (S2) ;

Dana Petcn - _]_8
System (S1) ; ) ;
— 44984,(1) — 3996y,(1) -~ 0.006 — ¢ 25498/1500
2248.5y,(1) + 299Ty,(t) — 0.503 + 3¢, ¥(0) =} —16499/1500 | s
) il

17998149914

1500
—1.268908
N D> ¥ I Y2 . .
g pg-von OROTIIBAD D! iyl g0
= i 1500 ]
0.3678795
— 6y, (1) = dy,(t) + 2sint 0
» WO) = 0|

9dy,(2) — 95y,(t)

— 1000 yy(t) — yi(1) ~1

System (S3) :

—2500,(1)y5(?)
0.013y,(2) — 1000y,(1)y4(?) — 2500y,(1)y,(t)

— et - . (1—9 e~1000 . 9496c08t + 9506 sint)
99 10001 \99
i) (--}9§4€_“mm——9494cost—% QSOGSint}
“ T Tooo1 99
1000
"1 — (1 -+ 1000)e100r
© 0.6361023
0.6193826
0
yi(t) = —0.013y,(t) — 1000y,(1)ys(?) 1\: |
, 9(0) =1 }
0

0.99073192

Baact [10]:y(1) =| 1.00926441

—0.00000367

)
o
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Analysing the results, we can see that the proposed methods in the
paper present all have good stability properties and implementation perfor-
mances. Some methods are indicated for solving special stiff systems like
methods (4.1) and (4.4) for the system (S1) or (83) and (4.2) for the
sSystem (82),

Although it is difficult to draw any definite conclusions from these
limited results, a general pattern is indicated. Tt appears that our methody
are at least comparable to the classical ones and therefore worth conside-
ring in a comprehensive comparison. However, we do fee] that our results

|

|

J s
AMethod (81) IifTorL (82) IifTort (S3) Lffort
——__.___,______._________.____________.._...__
J I =0.01 nh=0.05 h=0.1
-___'_‘_‘—l______. = e e———— e —— | 2 __'___'__‘__‘_I___"
1.195369 30217 .6904017 |64F .9916564 231
Enright (2.3) — 8953443 | 302D .6731095 |64D 1.00834 23D
.3690993 | 2028 —6.539034FE— 30 % 448 —3.6701941< g% 148
1.205755 50417 .6834468 11410 / .9916568 391
En g‘]and(2.5) — .9031347 | 100D .6661996 |20D 1.00834 9
-3678792 | 2025 |—6.546161E— 30 [17S 1 [~3.67019715— 6 158
1.174317 | 510T° .7059933 124 .9916567
OLS1 (3.1) — .8795553 | 305D .6886706 72D 1.008339
3715501 | 2058 |—2.7706115— 7 528 | —3.676911K
1.205853% [50617 .6830078 1281 .9916446*
I'Ii\‘Il(fl.l) — .9032077% 100D .6657606 120D 1.008352%
3678793 %2038 —4.81277415 ¢ 548 —3.662948E — ¢
1.205848 5041 .683005* 114F .9916566
HAM 1(4.2) — .9032041 (100D .6657568* 20D 1.00834
-3678792 (2025 —6.539737E—30 |47s —3.670196E— ¢
[ 1.205755 [7061° .6834486 1581¢ 9916787
FIN _4(4.6.1) - .9031349 100D .6661998 20D 1.008318
3678792 |2028 —06.579986F—30 465 -3.670312E —g¢
1.205758 |706F .6831486 1581 . 9916565
— .9031366 |100D .6661998 20D 1.00834
HM 4(4.6.2) 3678792 12028 —06.568837E—30 [46s —3.670195E—¢
A= (= = e iaet 2 e ik B (s — 7
h=0.01 h=0.01 h=0.01
e i e | SR S S| — e
1.196627 (304F .6464161 29617 . 9907243 2021
Obrechikoff - 8962831 (304D . 6295791 296D .009272 202D
(2.6) 3678732 (2045S 0* 1968 .009272 202D
1.205815* |510F .645691 * 464F .665286E— ¢ 1028
Bokhioven (2. 8) [— -931796 % |100D . 6288624 * 100D .9907317 J10F
.3678794 #2055 0* 1828 -665327E—6*  [1058
1.205753 [712F .6457027 6461° .9907318* 4151
TIM 3(4.4) — .9031334 [100D 6288741 100D .009264 * 1001
.3678794%(204S 0* 182S .665327E —6* (1058

Acluzaw!egcmcn[s. The author is grateful to Dr, Georg Bader Irom ihe University
of Heidelberg, for a number of suggestions that helped 1o improve this Paper,
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indicate that a properly implementation version of our algorithms should
be useful for the numerical integration of stiff differential systems. We
expect that, in the case of a variable steplength, those new methods have
better properties than the classical methods.

10.
11.
12,

13.
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