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ON THE SECANT METHOD
AND THE PTAK ERROR ESTIMATES

IOANNIS K. ARGYROS
(Lawton)

INTRODUCTION

In this study we are concemed with the problem ofapproximating a locally
umque solution x* of the equation

(1) Fx) + G(x) =0,

where F, G are nonlinear operators defined on some convex subset D of a Banach
space E, with values in another Banach space E,. The operator Fis assumed to be
Fréchet differentiable on D, whereas the differentiability of G is not assumed.
Newton’s method, the Secant method as well as Newton-like methods have
been used extensively to solve equation (1) (see, e.g. [1]-[9], and the references
there), under various assumptions, when G =0 on D.
We will study the convergence of the Secant method

2) X, =%, - 8F(x, 1, x)! (F(x,) + G(x,)), x|, x, € D, n=0
to a locally unique solution x* of equation (1). Here the divided differences

8F(x, 1, x,) € L(E,, E,) for all n>0.

Forx |, x, €D, we assume that 6 F(x |, Jco)'1 exists and

2

<k (r) =2 + k(v -

@ RACRENRCORCE) B0 S

forall X, Y2 EU(xo,i‘)C_Z U(io,R)= {x EEl‘ "x—xollsR}g D, and some fixed R>0. The

functions k,, k, and k; are nondecreasing on the interval [0, R].

3) “SF(x_l %) (8F(x,y) - 8F(z,2))
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We will use the method of “continous induction”, which builds on a special
variant of Banach’s closed graph theorem [6], [8].

Using the above conditions, and method we will provide an error analysis
for the Secant method. For special choices of the functions k,, k, and k; our
results reduce to earlier ones. We also show that our results improve on earlier

ones [3], [4].

CONVERGENCE ANALYSIS

We will need to introduce the constants
(5) r1=0,7, =”x_1—x0">0,r1=r0 +"x1—x0||> 0,

©) a=1-[w(R)+wy(R)+w(ry)]
the sequences for all n>0

T+l

I(Wl(t) +wy (8))dt (w3 (1) = w3 (5,)) = (W1 (1=1) + w2 (1)) = 73)

)
(7) T2 =ty +— ”

n—1

() . =1—[W1(’}1)+W2(”n+1)+Wl(”o)]
and the functions
) w(r)= Ikl(t)dt

0
(10) wy(r)=[Ret)at

0
(11) wy(r)= [l (t)d

0

and .
[ Cone) + oDt w () = wsr3) = (w10 ) + ()= 10)

(12)  T(r)=n+=2

b
where
(13) b=b(")=1“[W1(”)+Wz(”)+W1("o)]

We will need the lemma.

3

, and
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LEMMA. Let g : U(x, R)*> - E, be a nonlinear operator satisfying

(14) ()~ (o)< )x-2| +aa(r)y-7)

for all x, y, z € Ulxy, r) and for some nondecreasing real functions q;and q,
on [0, R].
Then
a-+A] -+
(15) leCe+ oyt ha)-g(my)s [a(e)de+ [gy(c)ar

n 7]

Jorall xeU(xy,t),yeU(xy,t),

In|< R=t,|p|| < R—1,.
Proof. Let x €U(xy,t,),y €U(xy,t,), )< R- tj,and||h,|< R~ 1,. Using (14) for
meN, we obtain
\ m
“g(x +hl,y+l12)— g(x,y)“S ZUg(x+m‘1jh1,y+ m‘ljhg)—
j=1 .

16)  —glxrm(j=Dhy+m (=D )< S ety + e+
j=1

m 4 +""l ” 12+”h2 "

+§CI2(12+m—1j”h2“)m—1”h'2”3 J.ql(t)dt+ qu(t)dt as m—»oo

by the monotonicity of ¢,, g, and the definition of the Riemann integral,
That completes the proof of the lemma.
Using (3), (4), (14) and (15) we now obtain

”SF(x_l,xO)‘l(aF(th, y+hy)~8F(x, y))"s

<w(ty +A[) i)+ w1 + ) - wa (1)

and
(17) HSF(x_l,xO V(G v+ B)=G(x))| < w (e +A) - ws (1)
for all
x eU(xg,1),v €U(xg,r),y €Ulxo,t) ]| < R~ || < R-1,

W< R-r.
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i It:
i state and prove the main resu ; e
&Evgﬁllill\ldovzet F, G 'pD c E, > E, be nonlinear operators satisfying
N ? P =
conditions (3) and (4).
g ] - e D, with

I(g the inverse of the linear operator 8F(x-,, x,) exists for x-;, X

Jc-ltho;(ii) there exists R, R;<R such that the constant a, given by (6) is positive,
i .,

(ii1) there exists a minimum postitive number R, such that

g;et’;ze scalar sequence {r,} n>-1 generated by (7) is monotonically increasing
: its 1. 't': which is number R,. '
it b(zg)mjzj. js;:znl?; lf{ih}m.-l; > -1 generated by the Secant Jiuree!!ar).:z:j (3) Jisxi.ﬂe;}
defined, remains in U(xﬂ,"Rl) for all n 2-.1, and c}gnvfzrgei Baoi SDGS utio
e uatio’n F(x) + G(x) = 0, which is unique in Ulxy R) (if i y
; Moreover, the following estimates are true forallnz0:

(19) llxn = Xp-1 “ STy — Ty

(20) Rl B
‘lSF(x_l,xo )_I(F(xnﬂ) + F(x,,+1 ))

(21) <vyq= rthl(Wl (£)+w ()}t + ws(Taa) = W5 ()= (wi(m-1)+ wa ()1 =7

n

v . 2
(22) Hxn+1 —X *”S —):—1’ (lf G 0)

SRR | B0 S RO B ) CRED!

"n

P
@ N P
where
1
@9 Pn= .[ R e, ) = wa (e = o)

0 [+, —x )t
([, = ol + e * =)= wa (o = of])+ s ([ = ol + ¥ ,

the minimum zero of equation T(r)-r=

R = lim r,.
n—>o0

n=0,1. Let us assume that x,,, €Ul
first show that 8 F(x

“ESF(x_l,xO ) (8F (e x4)~8F (x5, ))”S“SF(JC_I,JCO ) (8P (xt 1) 8 F (x0,,))

3
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and
(25) 8y = 1—[w1 (”xn_l L .)cO”) + wz(”xn —xou) +w(n )]

Proof. (a) By (5), (7), (8) and the monotonicity of the functions w,, w, and

1wy, we deduce that the sequence {r,} n=-1is monotonically increasing and
nonnegative. Using (5), (7), (8),

we easily get ¥.1s ¥ ¥y S R, Let us assume that
P SR fork=-1,0,1,2, .., n
Then by (7)
Tke+1
J () (0))dt+ (w (1)< s (o )= (m()+ Wy )1 - 72)

. . 2%
Te42 STegr

'J&<W1(’)+Wz (’))d”(‘va(”k)— Wy (”k-l))‘(wl("k—z)"‘ Wz("k—l))(”k ~T51)
]‘]t(wl(’f)+ Wy (£))dr+ (w3 (1)~ wy ()= (Wi () +w, ) =7

a

<ST(R)<R, by (18).
That is the scalar sequence {r,} n>-1is bounded above by R;. By (iii) R,is
0 in (0, R,], and from the above

(b) By (5) and (18) it follows that X, % €U(x,, R)) and (19) is true for
» R,) and (21) is true for k= -1,0,1, ..., n. We
1 X,,,) 1s Invertible. In fact, by induction hypothesis,

k+1 k+1
(26) (B ”52”)‘1 "6‘—1” <(r ~7j2 ) S 1y <Ry,
j=1 j=1

and hence, by (16) and (19)

=+

+”6F(_x_l,x0 Y (3P (10— F (x5, ))Ns
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< o150 (5 (r050) =5 + (o =30k + (s =)

+“6F (x_1,% )—1(5F(x0 +(x_y =% )% + (%9 — X))~ 8F (%, » %o ))“ <

<w(7) = wi(0)+ wa(ri41) = wa(0) + wy(ry )~ wy(0)
(27) +wy(0+0) = wy (0) S wy (R)+wy(Ry)+wy(rp) <1,

by (6) and the fact that a>0. It now follows by the Banach lemma on invertible
operators that

: = 1
(9 Jor(reoseaa) 6P (x.1,30)

b
|

<

where a,,, is given by (8)
Using the estimates

A :”xk +1( X4 _x‘k)_xk—lngnxk X

AR ka (X — %)~ xk“ <t —xi,
relations (2), (3), (4), (16), (17), (26), (27) and.(28) we obtain in turn for all £>0
| SF(_x—be)—l[(F(xkn)‘F(xk)—

||xk+2 ——kaHSNSF(Ik ’xk+1)_18F(x—1>x0 )H

~8F (1% N X1 =7, )) +G (xk+1)‘G(xk)]H5

i +

j NSF X_1,%0) I(F l('xk +t(xk+_1‘xk))—5F (xk—bxk))(xkﬂ—xk)

+”8F(x_1,xo)_1(G(xk+l)—G(xk))” <

<

_[ “5F Xp,%) (5F (o 201 =53+ 2 = 32)) -
A1

~8F (xk—1>3_6k))(xk+1 _xk)“dt +(W3(Vk+1)‘ W3<"k)) =
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[f (et +(1-2) )= Uyt + (1= 1)) -y, Woien=n)de+

+(W3 (M) - ws(n )) s
ey kﬂ[,"éwﬁ )+ () de—(w (1 D+ 9(50)) e =1 )+

+(W3 ("k+1 ) W (”k )) k42 = el

which shows (19) for all 70, where we have used 8F(x,x)=F '(x) for all
x €U(xq,R).

Itnow follows from (1 9), (26) and (28) that the secant iteration {x,,}, n-lis
Cauchy, well defined and remains in U(xO,Rl)for alln>-1. Hence, it converges
to some x* in such a way that (20) is satisfied. For n= =0, (20) gives x* eU(xy,R ).

By taking the limit as 7 - o in (2) wew obtain F(x *)+G(x*)=0, which shows
that x* is a solution of equation (1). To show uniqueness, we assume that there

exists another solution y* of equation (1) in U(xo, R). Then using (27) for

X = Xy = P Hi(x *~y*), we obtain

<

bF(x ,,\ﬂ [H(F( *+.r(x*—y*))—SF(xO,.x_fo)+5F(x0,xo)—SF(x_l,xo))Jdl

f Wy "xo *+t(x*—y*))“)—w1(0)+
+w2(“10 —(y*+( x*—y N) w, )+w1(r0)—w1(0)]dts
Sﬂy'vl((l—t)R+tR1)+wz((l—t)R+tR1)+wl(lb)—wl(())}dtS

(29) SWI(R)+w2(R)-Fw1(rO)<I, since a>0,
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where we also used the estimates

I - y*~t(x* =y )| =[(1=2)(x — )+ 2xo ~x*)| S(- )R+ 2R,
1

It now follows from (29) that the linear operator IF '( y* +t(x -y *))dt is
0

invertible. By using the approximation (if G = 0)

F(x%)=Gy*) = [ F(y*+(x*-y*)x* -y )b,

we get x* =y*, which shows that x* is the unique solution of equation (1) in U(x,, R).
Using the approximation

Xpyl = Xp =X ¥ =2y + (SF(xn—l’xn)—lsF(x—l’xO))[SF(x—l’xO)—l((F(x *) & F(xn) .

__5F(xn_1,xn)(x * —x,,)) + (G(x *) T G(xn)))]

estimates (16), (17), and the triangle inequality, as before we can show

[~

n+l xn” < ”xn -X *” +%’,

n

which shows (23) for all n=0.
Moreover, from the estimate

e (Pl 29t st
0

1 \ !
< J[ wl("x'o — x|+ Hx *—t(x* (x4 — % *))”) ~-wy(0)+

0

+w2(0 + “xo = (e *+e{xppy =% *))H) - wz(O)]dt +wy(rp) <

kS j[ wi((1= )Ry + tRy) + wy((1-1)Ry + 1Ry) }dt <
0
(30) < [wl(R]) +wy(Ry) + wl(ro)] <1

since a>0.

9 On the Secant Method 11

1
It now follows from (30) that the linear operator j F '(x* +t(x —x*))dt is

invertible, and

) -1
el [J.F'(x*“(xnﬂ‘x*))dt} SF (x_1,% )< i
a

0

where,

aiﬂ:l—[ﬂwl<<l—r>rixo—-r*nﬂnxo o) (===l o

0

Furthermore, using the approximation ifG=0)

0

F(¥1)—~F(x *):[J‘ F(5%+(x,y —X*))dtJ<x,,+i ~x*),

relations (21) and (31), we obtain

SF()C_I,JCO )_IF(X'MH) <

1 —x"f”S [ J F'(x*+t(x,, —x*))dtJ SF (%_1,%0)

<

< n+l < Vn+]
=i=3 I >

5} a

which shows (22) for all n>0.
That completes the proof of the theorem,

Remarks. (a) Let us assume that k, =k, on [0, R]. Then we can choose

k()= ()= i HE-F (o= yiox )‘1(5 F(x, y)-8F (z,z))“

% y,zeU(xo,r) ”x—z”+”y _Z”

and

b0 wp PO e o)
X,y eU()Co ;”) ”J'"y “

Relations (3) and (4) will now follow above choices of ky, k,and k,.
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(b) Let k, = k, = c, for some ¢>0 on [0, R] and G = 0. Then our results can be
reduced to the ones obtained in [3], [4], [6]. on

(c) Let G= 0. By choosing g, and ¢, as in () above, we will have &, (r) = k,(r)
< kon [0, R], where &> 0 is the usual Lipschitz constant appearing in (3).
This condition can then be easiliy used to show that our results on the distances
‘x,ﬁl . “ and “x,, -X *H are better than the corresponding ones in [3], [4], [6].
The details are left to the motivated reader (see, also [1], [2], [5], [7]-[9] for Newton's
method).

(d) Similar results can be proved if in (3) and (4) |x —z},|y - 2| and |x - ]

*Jy-2|" and

are replaced by Hélder-type conditions of the form Hx -z
||x -3, respectively for p €[0,1] (see also, [1], [2]).
() Estimates (22) and (23) can be solved explicitly for |x,,; —x*| and
X, 1% *H respectively, when for example k,(r) = ¢, and k,(r) = ¢, for some positive
fixed constants c, and ¢, on [0, R]. Relation (22) will then provide an upper bound
on [x,,; —x*, whereas (23) will provide a lower bound on |, = x*| for all n20.
(f) By (26) it can easily be seen that a stronger result can immediately follow
. if by making the appropriate changes the estimate [|x x —Xo H <r —r, is used instead
of x, = xo|< 7 for all k20 in the proof of the theorem.

(g) The uniquences of the solution x* of equation (1) in U(x,, R) was
established only when G = 0 on D. We assume that G20 on D, and define the
iterations

yn+1=yn_SF(x—l’xO)—l(F(yn)+G(yn))7 for any yo eU(J‘:O’Rl) nz0

Zy1= 2y ~6F(')C—I’X‘O )—I(F(Zn )+G(Zn )),ZO =Xp,2-1= X1 n=0

)
Sp1 =8y + _[(Wl(t)JrWz ()t =wy (1o (55 =1 +w3( 5, )= ws(s,,-1 ) n21

Sp-1

s_1=0, 59 :")’1 —J’0||> §1=58 +“}’1_J’0|

by =ty + Jq(wl(t)+w2(t))dt—wl(to)(t,, ~ty )+ W3ty )= ws (1) 120
0 t_1=R, so<ty<R,
§,= I(wl(t)+w2(t))dt— f(wl(t)+w2(t))dt— f(wl(t)+w2(t))dt—

~wy (70 M(Spc = et )+ W (521~ Wa (Bt )2, =5, 120
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and the function

,
L(r)=r+ J‘(Wl(‘)Jsz(t))dt—Wl("o Ys1 =50 )+ws(r)—ws(so)-
50
Moreover, we assume that in addition to the hypotheses of the above theorem,
there exists a minimum positive number R*  such that

T (R*)<R%,

and
5 >0 n=0.

n =

Then as in the theorem above, we can show:
(i) the sequence {s,} n>-1 is monotonically increasing, whereas the sequence

{r} n>-11is monotonically decreasing and

nli—l)noosn=nh—‘—l>léot'_1=R;SRl and Ty(R)<R,.

(ii) the sequence {z,} n=>-11is well defined, remains in u(x,R*) for all n=0,
and converges to a solution z* of equation (0), which is unique in U(x,R), with
Zi= o

Moreover, the following estimates are true:

”Z" T Z"—IHS 5= 8y 120
|z, —xH< R} —s, n20

and
"Z" ~Vn ”S L, —s, n=0:.

The conditions on the sequence {3_} can be dropped if we define the sequences
S’H
1= | (O +wa(£)dt=wn (1 )5, (5, ) Fo =l = yol m20
0

tn
by = I(“’1(‘)+“’2(t))dt—Wl(fo Nt )+ ws(t )50 Sto <R
0
instead of the sequences {s } and {¢} respectively. The conclusions (i) and (ii)
will then also follow for the new sequences {s, j and {t,, } n=0.
Moreover, the following estimates are true:

and
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