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ON THE BALANCED AND NONBALANCED VECTOR
OPTIMIZATION PROBLEMS
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1. Let S be a nonempty compact set of IR” and letf= (fl,...,j;): S—>RPbea
continuous p-vector function.
- In this paper we consider the vector optimization problem

4

v-min f{x)

S subject to xe.S,

denoted briefly as v-min (f; S). ,
Evidently, each component Jir i€{1,..., p} of f defines a separate optimiza- -
tion problem

(P) min f(x)

subject to xe.S.

Let
(1) m; = min {f,(x) | xS}, ie{1,.., p},
) | S;={xeS | f0) =m), ie{1,... p),
and
(3) S=[)s; .

i=
Evidently, eachset S;, ie{1, ..., p} is nonempty, but the set S, may be empty.
Example 1. Let f;, f,: R2 >R be defined by
[Gg, X)) =x; +x,, for all (x;, x,) e R?

and

So(xy, %) =x; - x,, forall (%1, x,) € R?,
and let S = {(x,;, x,)eR? [0 Sx;£1,0<x,<1}. Wehave m; =£(0,0) =0,
my =f(0,1)=-1, 8, = {(0,0)}, S, = {(0, 1)} and So=8NS,=0.
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DEFINITION 1. Vector optimization problem v-min (f; S) is said to be
balanced (see [2]) if the set S, is nonempty: otherwise, it is called unbalanced.
The set Sy is called the global optimal solution of balanced problem v-min( £ ).

Remark 1. Let S be a nonempty compact convex set of IR” and let
JZL S o j:o) :S—IR? be a continuous p-vector function with all components f,..., pr
convex. If problem v-min( f: S) is balanced, then the set Sy 1s convex. Indeed, for
cachie{l,.., p} we have S={xeS I Ji(x)<m,}. Since the functions f,..., f, are
convex, it follows that the sets Spyeres SP are convex. Then the statement is proved.

DEFINITION 2. Let M be a nonempty subset of IR?, The function F:M—1RY is
said to be increasing if for all u, v e M with u<v we have F(u) < F(v).

Evidently, if F=(F,,..,F q) : M—>R7is an increasing function, then F}:M—%R
J€{1,...,q} is also an increasing function.

THEOREM 1. Let F:IRP—IRY be a increasing function. If problem v-min (£ S )
is balanced, then problem v-min (Fo f:8)is also balanced. .

Proof. Problem v-min(f.S) being balanced, there exists a point x%¢$ such
that xe S, for all i {1, ..., p}, Le. f(x°) < f(x) for all xS, Since the function F i
increasing, it follows that F' (f(x%) < Fi (f(x)) forall xeS; this means that problem
v-min (F° f; S) is balanced.

COROLLARY 1. Let A=[a,] eRI*P be a matrix with all elements positive:
ay20forallic{1,..., q}, je{T,..., p}, and let AF: R? - RY defined by

p ] P .
AF(X)= Zaljxj,...,Zaqixj 3 for all x EIR‘D.
- =t j=1

If problem v-min (f: S ) is balahced, then problem v-min (4 F° £ 8) is also balanced.
Proof. Apply theorem 1 with F= AF.

THEOREM 2, Let S be a nonemply compact convex set of R" and let
S=(f150,1,): SIRP be a continuous p-vector. function with all components 19005 j;
convex. If p> n+1, then problem v-min ( [ S) is balanced if and only if for all i,

e b1 €410, p} we have
n+1

(1) s, #@.
k=1

Proof. For each i€ {1,..., p} we have 8= {xe§ l J{*) <m}. Since the func-
tions f},..., f, are convex, it follows that the sets Sl-"',"Sp are convex, Now, using
Helly's theorem for convex sets Spseens Sp‘ theorem holds.

2. Let now >0 be a real number and let

(4) SR, = {xeS | f(x) <m;+ r}, ie{1,.., p}
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P
(5) SR, =()SR,

i=1
- Evidently, each set SR,y ,..., SR, " is nonempty, but the set SR, may be empty.
For example, for the functions J1> /> and for the set S from example 1 we have

SRya41 ={(x1,72) e1R2]x1 +7<1/4,0sn21 0sn<i)=o,

SRyaz = {(0, %) eRz‘xl "% $-3/4,0Sn 31 0s <120,
but SR V4 = SR 1/4,10 SR 1/4’2:'- @
If we take » =1, then

SRy ={(xl,)C2) EIR2,)C1+X2SI, X =% <0,0<x<], 0Sx2_<.1}¢®.

DEFINITION 3. Let > 0. Vector optimization problem v-min (f;.5) is said to
be r-balanced (see [2]), if SR # &; otherwise, it is called r-unbalanced.

The set SR, is called the 7-optimal solution of -balanced problem v-min (f; ).

Clearly, every balanced problem is also -balanced for any > 0, but not
vice versa. '

If we take

2 maxmax fi(x) ~ min min i(x),

where I = {1,...,p}, then SR =S, so that for such r problem v-min (f;S) is
r-balanced. This justifies the following definition.

DEFINITION 4. The real number
(6) = min{r > O, SR, = @}

is called (seef2]) the balance number of the vector optimization problem v-min (f S5).

THEOREM 3. Let S be a onemply compact convex set of R", Jet
S= fp),:S — R? be a continuous p vector function with all components
Spreons j; convex. Letr>0. Ifp>n+1, then problem v-min (f; S) is r-balanced if and

n+l1
only if for all 1y,...i, 4 e{l,...,p} we have ﬂSRr,ik .
k=1
The proof is similar to the proof of theorem 2.
THEOREM 4. Let F = (F,...,F,) : R? — IRY be a continuous, subadditive,

homogeneous, increasing function with F (1,...,1)=(1,...,1) and let r > 0. If pro-
blem v-min (f’; S) is r-balanced, then problem v-min (Fo f; S) is also r-balanced.
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Proof. Because v-min (f’; S) is r-balanced, there exists x°e.S such that

(7) fi%) <m; +r, foralli e{1,..., p}.
Foreachj €{1,...,q} there is x/ € S such that

®) Fof () = min {Fof (%) | x € §} = M;.

Because F is increasing, in view of (1), we have

) Fyof (x)) 2 Fy(my,..., m,), forallj e{1,..., q}.

On the other hand, since F is increasing, from (7) we get

(10) F}Of(xo) S Fi(mytr,..., mp+r), forallj € {1,..., q}.

But F is subadditive, homogeneous and F(1,...,1) =(1,..., 1). Then

(11) Fmytr,..., mtr) SE;ny,..,m)+r forallj e(1,..., g}.

From (8)—(11) it results
Fof (x9) SM+r, forallj e{1,.., q}.

Hence v-min (Fo f'; S) is r-balanced.

COROLLARY 2. Let 4 = [a,;] € R9*P be a matrix with all elemeits positive:

a;20foralli e{l,..,4},j €{1,...,p}, and
agt..ta,=1foraliefl,.,q}.
Let AF : RP — IRY defined by

.p E p . Lo
AF(x) = Zaljxj,..., Zaq,-x- , for all x e R? .
= =1

and let ¥ > 0. If problem v-min (f; S) is r-balanced, then problem v-min (AFof;S)
is also r-balanced.

Proof. Apply theorem 4 with F'= AF.
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