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ON THE CHEBYSHEV-TAU APPROXIMATION FOR SOME
SINGULARLY PERTURBED TWO-POINT BOUNDARY
VALUE PROBLEMS - NUMERICAL EXPERIMENTS
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1. INTRODUCTION

We try to expound a direct investigation on therstabi]ity of the Chebyshev-
tau approximation for a singularly perturbed linear two-point boundary value pro-

blem (t.p.b.v.p.)

—su'+u'=0, xe(-1,1), 0<e < 1,
(L.1)

u(—I):I, u(l)zO
as well as for a non-linear problem
{—su“+uu'=f(x), xe(-11), 0<e <1,

u(~1)=u(1)=0.
Problem (1.1) may be regarded as a linearized one-dimensional version of a
convection-dominated flow problem and problem (1.2) is the steady state
Burgers’ problem. '
It is explained in [7] why expansions in Chebyshev polynomials are better
suited to the solution of some singularly perturbed problems (particularly stabi-
lity) of hydrodynamics, than expansions in other, seemingly more reievant, sets of

(1.2)

orthogonal functions,
For improving the numerical stability, the tau variant of spectral methods

leads to the determination of the coefficients corresponding to “high frequencies”
(i.e high 7 in (2.1)) rather from the exact equations furnished by boundary condi-
tions than from approximate algebraic system obtained from differential equation
(see (2.2), (2.6), and (2.7)). It is well known that these “high frequencies” are

responsible for the lack of stability.
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In [6] the authors give the following error estimate for both Legendre and
Chebyshev spectral approximation of (1.2)

(1.3) “uN(s) - u(s)“m + N”uN ()- u(e)”o,m < C(a)NI—f ,
where uy (x,&) is the spectral approximation of the exact solution u(x,€), o =1,

u(x,e) e Hy(-1,1), Vee(0,1), Hyg are weighted Sobolev spaces for both Legendre

-1/2
and Chebyshev weights [ @ =1, © =(1 - xZ) rcspectivcly) and "” =4 stands for

the normin A .
Actually (1.3) comes from

(1.:11) “uN(s) - u(s)”l’m < CNl_U“u(t—:)”U’m
(1.5) () — un(e)| e CN_GUu(e)"U,w :

Of course, estimations (1.3), (1.4) and (1.5) are also valid for (1.1).
Throughout this paper C will denote a generic positive constant inde-

pendent of NV,
Unfortunately, in [5] the authors give bounds for derivatives coresponding

to (1.1) that make estimations (1.4) and (1.5), and of course (1.3), useless.
They read as follows

'u{")(x,e)) < C(I+ s"'e(xvl)la)), -l<x<l, i=12,

and they show the main difficulty in treating singularly perturbed t.p.b.v.p. of
boundary layer type. Many numerical methods (finite difference and finite ele-
ments) proposed to solve (1.1) or (1.2), are expouned in [4], [5] and [8].

In order fo avoid the lack of stability for almost all numerical methods used
in such boundary layer type problems we try a smoothing technique suggested in
[1] as well as, for linear problems (1.1), a domain decomposition method also

available, for example, in [1], ch. 13.

2. THE CHEBYSHEV-TAU FORMULATION

The Chebyshev approximation uy(x,e) of the exact solution of (1.1) is given by
N
(2.1) uy (x,8)=> a,T,(x)  where a, are unknown real
n=0

coefficients depending on € and T(x), i=1,2,...,n are Chebyshev polynomials of
the first kind. Using (2.1) and the appendix from [3], the Chebyshev-tau approxi-
mation for (1.1) reads as follows
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N N

€ 7 9 1

- - = =0,0<nsN-2
- Z p(p n )ap+c,, Zpap ,0=n ;

p=n+2 p=n+l
(2.2) 4 p+n even- p+n odd
N r N
Z(—l) a, =1, Za,, =0,
(=0 n=0

c=2,c,=1,n>0.
The smoothing of (2.1) means to consider instead of that the expansion

N
(2.3) uN(x;S)= Zancnﬂ!(x)!

n=0

where the o, are required to be real non-negative numbers such that 5,=1 and &,
are decreasing function of 7. We used the factor o, corresponding to the raised

cosine smoothing, i.e.

o = %(l+ cosiNTE), n=01..,N

The qualitative study of problem (1.1), for example [2], [4], enables us to
decompose the domain (-1,1) into separate subdomains Q, and Q, such that

-LD=Q,UQ,, ,NQ,=2 and Q1=(ﬁl,l—ms]U[l—ma,1], where m was

taken between 5 and 15. The domain €, is the domain of boundary layer (a strip of

width O(g)) displayed on the left of x=1.
We choose from a large variety of domain decomposition method the patching

method (see [1], p. 470). So, the patched Chebyshev-tau approximation uy(x) of
solution of (1.1) is
ulN' (x,€), x e

HQNZ (I,E), x EQ2:

uN(x,e):{

where
it @ —a a, +a
u" (x,8)= 2 aTi(), x= 22 Le+ 22 L,
k=0 _
N, —
uévz(x,g)zzbkf‘k(g)’ gl I a £y a3 ';612 ,
k=0
a=-1, g =1-mse, a3 =1. :

Problem (1.1) is split into the following two, only the first remaining singu-
larly perturbed

5 '+ =0, —1<€ <1,

2.4) .
( w(-1)=1,
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¢

4
——u'h 'y =0, —1<& <1,
m

U (1)=0,

.3 | 4raqz((—)l) =t(=1),

diy(-1) _ duy(-1)

g, o g

The Chebyshev-tau system coresponding to (2.4) and (2.5) will be

F 2e M 5 4 Ny

_Z—ms Z P(P —k)ap+ ZpaP:O:OSkﬁNI—Z,
p=k+2 p=k+1
p+k even p+k odd

Nl
Z(_l) kak =1,
k=0

2

N, N,
=i g R B D Pl SO B Ny 2 |

p=k+2 p=k+1
p+k even p+k odd

N,y
2.be =0,
k=0
N, N2

Z“k = > (-D*p,

(2.6) )

N, N

2D YIRS Y@L EN S
b LaP = YRR
k=of p=k+1 e k=0 Cr p=k+1 ¢
p+k odd p+k odd

S

r.:0=2, =1, k=1. System (2.6) has N,+N,+2 equations and a, =0,1,...N:, B,
z.=0,1,...,N2 unknowns. We expected the algebraic system (2.6) to be better condi!—
tioned than system (2.2) because there is a less extreme ratio of the largest to
smallest coefficient. And indeed comparing {2.2) and (2.6), this is the case.

The Cebyshev-tau system for problem (1.2) reads as follows

[ e S 2 3

=2 Zpamap+s Z m(m =1 )amzﬂ,,OS.nSN—Z,
J 'ml,‘p]SN m=n+2

m+pzn+l m+n even

(2.7) n+m+p odd

N N
Za" = Z(_I)"an =0,

Ln=0 n=0
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where @, =¢ 1a  for gm,SN, ¢=2,c,=1,n21, and f, are the Chebyshev
series coefficients of f{x). This system is of course a nonlinear one.

All algebraic linear systems encountered in this work were solved by Gauss
type method. These systems have a quasi upper triangular form, only the equations
corresponding to boundary conditions in (2.2) or (2.6) contain all unknowns.

The SOR methods was unsuccessful in solving the nonlinear system (2.7).
Some methods of gradient type (Friedman) were very slowly convergent. Only the
classical Newton method was successful.

3. NUMERICAL RESULTS AND DISCUSSIONS

In Fig. 1 are displayed the exact solution of (1.1) for £€=0.01,
=]
1-x |

u(x,e)=afl-e 2 | a=|l-e @ denoted by solid curve, solution (2.1)

which is the oscillating curve, and the smoothed solution, cosmetic post-processed

(2.3), the dashed curve, extremely close to the exact solution. For both approxima-
tions we used N=16 and the coefficients o, corresnond to the raised cosine.
The smoothed approximation looks superior to the unsmoothed solution.
The solution 1" (x,s), for problem (1.1) with & =103, N,=8 and m=15 is

presented in Fig. 2, the upper line being the exact solution.
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The exact solution and the approximation u{\f B g) look identically even

if N, is very small (NV,=8) so we do not display them.
Figures 3 and 4 display approximations (2.1) with N=8, 16, 32 of problem

0, xe[-1,0]

1 xe(O,l] , respectively,

(1.2) with & = 0.1 for f{x) = x2 and f(x)={

They show that the approximations for N=16 and N=32 are very close to
each other, the approximation for N=8 being the oscillating line.

With the same entries, for & = 0.01, only smoothed solutions (2.3) of order
N=16, 32, 64 and unsmoothed solutions (2.1) of order greater than N=64 look
close and sufficiently smooth. These results and other ones worked out but
undisplayed in this paper, show that lowering e for both linear and especially
nonlinear problems a rapidly increasing order of approximation N is needed.

When a qualitative behaviour of solution would enable a domain decompo-
sition, this would provide very accurate solutions with a less important computa-
tional effort (CPU time and storage requirements).

In all examples carried out in this paper we used in addition to smoothing
factors, o, corresponding to the raised cosine, the Cesaro sums and the Lanczos
smoothing factors. The raised cosine seems to be the most effective.
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In our opinion these numerical experiments underline the superiority of the
spectral method of Chebyshev-tau type on the finite differences and finite cle-
ments method in solving singularly perturbed t.p.b.v.p. Of course these numerical
results are important in starting numerical procedures forunsteady variants of (1.1)
and (1.2) and they encourage us to go on to multidimensional problems.
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