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HEINZ H. GONSKA and DING-XUAN ZHOU
(Duisburg)

1. INTRODUCTION

The Szész-Mirakjan operators are defined on C[0, c0) as

k=0

k
Sni(z) =€ (n,f!) )

There has been an extensive study on the approximation by these operators. In
1978, Beker [1] extended a result of Berens and Lorentz [2] to the interval [0, c0)
and showed that for f € Cp := C[0,00) N Ls[0,00), 0 < a < 2,

[N]1e)

(12)  w(fD=0(") & [S.(fix)—f(@)]<M(2)5.

Here M is a constant independent of n € N and = € [0,00), wa (f,t) is the
modulus of smoothness defined as

(1.3) wy (fit) = sup [|[AFFC)|

0<h<t

fx+h)—=2f(x)+ f(x—h), whenh<uz,
AR f () =
" 0, otherwise.

By (1.2), we know that the second-order Lipschitz functions (i.e., the Lips-
chitz functions with respect to the second-order modulus of smoothness) can be
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characterized by the rate of convergence of Szasz-Mirakjan operators. Another
interesting result was given by Totik [10] in 1983 who proved the following
equivalence:

(14) 2 (f)e=00%) & [S9()—fle=0(n"%), 0<a<2

Here wi (f,t) is the so-called Ditzian-Totik modulus of smoothness, which is
defined for 1 < p < o0 as

(1.5) Wi (f,1), = sup [ A7 o) f () ]

p(x) = V.

The Szész-Mirakjan operators can not be used for L, (1 < p < oco)-approximation.
For this purpose, we must modify these operators. Two versions of this type
are Szasz-Kantorovich operators:

p7

k+1

(1.6) Ko (f.2) ::Zn/c " F () dt Sp (x)
k=0

n

and Széasz-Durrmeyer operators:
(17) Dofia) = Yo [ 5O Sus (Ot S, (a).
k=0 70

These operators can be used for Ly,-approximation on [0, c0). In fact, for L,, =
K, orD,,0<a<2, 1<p<oo, fe€ Ly0,00), we have (c.f., [5], [7])

(1.8) Wi (f,1), =00 < |Lu(f)=fll,=0(n"2).

Parallel to Szasz-Mirakjan operators, it is natural to consider characteriza-
tions of Lipschitz functions by means of the above two versions of Szasz-type
operators. Early in 1985, Mazhar and Totik [9] modified the Szasz-Durrmeyer
operators and gave the same equivalence to ([1.2). However, their modified op-
erators have the disadvantage that they can not be used for L,-approximation.
In fact, for the original Szasz-Durrmeyer operators , Mazhar and Totik
[9] posed the open problem to find an inverse theorem to the following direct
estimate:

(L.9) Dy (f,) = £ (8) ] < Men (£1/2 + ).
Here w; (f,t) is the modulus of continuity:

(1.10) wi (f,t) = oilflzgtuf(' +h) = f () ]|
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In 1991, Guo and the second author [6] solved this problem and showed that
forO0<a<1, felp,

(1.11) wi(f,)=0@") & |[Dp(fix)—flx)| <M (E+5)2.

This is the first characterization of Lipschitz functions by means of linear oper-
ators which do not reproduce linear functions. Extensions to higher orders of
Lipschitz functions and some other discussions can be found in a series of the
second author’s (joint) papers [8], [I1], [12], [I4]. On the other hand, we also
showed that for any 1 < a < 2, there exist no functions {V,, , (z)}nen such that

(1.12) wy (f,t) =0(*) & |Dn(fix)—f(2)]| < MYyq(z).

Thus, the second-order Lipschitz functions can not be characterized by means of
Szasz-Durrmeyer operators when 1 < o < 2. This happens also for Kantorovich
operators, see [14]. To overcome this difficulty, Ye and the second author [11]
introduced a technique of matrices and modified the Kantorovich operators so
that they can be used for characterization of second-order Lipschitz functions
as well as for L,-approximation.

The puropose of this paper is to introduce a class of Szasz-type operators
by means of Daubechies’ compactly supported wavelets (see [3], [4]). These
operators have the following advantages: Firstly, they have the same moments
of finitely many orders as we arbitrarily choose as Szasz-Mirakjan operators,
hence they can be used to characterize the second-order Lipschiz functions.
Secondly, they can be used for L,-approximation (1 < p < co) and a similar
result to holds.

In the following sections we discuss these two aspects. We shall denote by M
a constant which may be different at each occurrence.

2. CONSTRUCTION OF SZASZ-TYPE OPERATORS BY WAVELETS

We recall some facts about Daubechies’ compactly supported wavelets (see

3], []).
Given N € N, Daubechies’ compactly supported scaling wavelet y¢ is defined
by the following refinement equation

(2.1) G()=2> o (2 —k),
k=0
¢(0) =1,

where {hi}rez is the finitely sequence given by
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D I = (H=) Ly ()
k=0

with
N
[Ln (@) [ = Pr(sin®§) >~ (V0F7) (sin*4)"

n=0

This function is compactly supported with supp y¢ = [0,2N — 1]. Moreover,
there exists a positive constant 3 > 0 such that for N > 2, y¢ € CPVN (R) and
for 1 <k < BN,

(2.2) /ka N¢ (x)dx = 0.

In particular, when NV =1, 1¢ = xo,1) is the classical Haar basis.
In what follows, we assume that ¢ € L (R) has the following properties:

(i) supp¢ C [0,C] with 0 < C' < .
(ii) / ¢ (z)dr =1, and, for 1 <k < K, 1) is satisfied where K € N.
R

Then, our Széasz-type operators are defined as
(2.3) Lu(fz) =3 n /R £ ()6 (nt — k) dtSy (2.
k=0

When K = 0, and ¢ is the Haar basis, these operators are exactly the Szasz-
Kantorovich operators. Thus, we see that our operators are extensions of the
Szasz-Kantorovich operators.

By the moment condition (ii), we have the following theorem.

THEOREM 2.1. Let L, (f (t),x) be defined by (2.3]). Then, for 0 < k < K, we
have

(2.4) L,(t*,2) = S, (t*,x), x€[0,00).
In particular,

(2.5) L (1,2) =1

(2.6) L, (t,z) = x.

The moment condition (2.4) is the main improvement to Szdsz-Kantorovich
and Szasz-Durrmeyer operators.
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3. CHARACTERIZATION OF SECOND-ORDER LIPSCHITZ FUNCTIONS

We need some preliminary results to state our main result in this section.
For our proof, we need Peetre’s K-functional given by

B K= it {1 gt tlo ]} >0

Since for g ¢ Loo[0,00), ||f — gl = 00, this K-functional is equivalent to the
modulus of smoothness:

(3.2) M7lwy(f.t) < Ko(f,t?) < Mwsy (f,t), feCp, 0<t<1.

Two types of Bernstein-Markov inequalities are necessary for our purpose, which
we state as follows.

LEMMA 3.1. Let f € Cp. Then we have

(3.3) [ (Fllse <M [ flloo

(3.4) L5 (D)l < Mn | fllo
(3-5) 10 (D] oo < M2? || £l
(3.6) l° L ()]l < M| fll

Proof of Lemma [3.1. We observe that

(3.7) (o) Z/ £) dtSyp (x).

Therefore, for f € Cp,x € [0,00),

Z / O dtSup @) [l < C 18] |1l

Hence ) holds.
To prove l} and (3.5]), we observe that

(3.8) ok (@) = n(Spp—1 () — S (2) ).
Here we set S, _1 () = 0. Then for f € Cp, x € [0, 0),

‘L/ f7 ‘ - nZ/ dt(Sn,k—l (.CE) - Sn,k (.Q?))

< 20C (|9 ]loo 1/l oo
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and
Ly, (f,2)] = |n? Z/ () dt(Sn -2 (x) = 2Sn k-1 () + Spk (x))
< 4n2C ||8lloo 11 oo
Hence (3.4) and (3.5)) hold.
Finally, using another expression for the derivative, namely
(3.9) i (@) = B S, (2)),
we obtain (3.6)):

‘ o)L (f,x |_

wZ/ £) dt S (« )((’“;2’0)2 = m’z)‘

< Cllloo 1fllo 3 D [ (k = n2)* + k] Sk ()
k=0

< 2nC (|9l oo 1/l
Here we used the moments of Szasz-Mirakjan operators:
(3.10) Sy (t,x) =z,
(3.11) Sn((t—2)*,z) =
The proof of Lemma is complete.

z
p

LEMMA 3.2. Let f € C?[0,00) N Cp. Then we have

(3.12) [Zn (Dl = M| ]| :
(3.13) 1Zn (Dl < M) 5
(3.14) "L (Nl < M| ]|

Proof of Lemma[3.2] By || and (3.8)), for z € [0, 00), we have

Ly, (f, @ }— (HEEL) — f (B5)] ¢ (t) dtSn e (2)

< Cllgll [17]] o -
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and

L (f, ) \— (BEEE2) o f (BEEEL) 4 £ (HEE)] ¢ (¢) dtS, g (2)

< Cllgllo 1l

To prove (3.14]), we need the following inequality derived from a result of Becker

[1:

h2
(3.15) / / e dudy < (m+2h)?1 Z—2h)

with0<h <3 0<2<1-2h
Then, for n > 8, = € (0,00), using 1} withz =0, h = %, we have

00 c pL .1
xn? Z/ / / F(HE w4+ v) dudv ¢ (t) dt Sy, (2)
0’0 Jo Jo

|0 (@) Ly (f,2)| =

<mn22/// dudvdtSnk )H¢HooH‘PZfHHOO
SiBIIaSIIoonzf"HOO{CZ” () 4 120m5nn (o >}

SCH(bHooHSO2f”HOO {Zzsnk+l +125n1< )}

<12C |4/l €% 1" o,

In the case n < 8, (3.14) is easily derived from (i3.6]).
The proof of Lemma [3.2]is complete. O

With the above preparations, we can state our characterization theorem as
follows.

THEOREM 3.3. Let 0 < a < 2, f € Cp, L, (f,x) be given by (2.3). Then
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(3.16) wa (f,t) =O(t%)
if and only if
(3.17) Lo (fi2) = f(2) | <M (2+ )%

Proof of Theorem [3.3] Necessity. Suppose that (3.16]) holds. By (3.1]) , we know
that for 0 <t < 1,

Ky (f,t) < Mtz
Let g € C?]0,00) N Cp. We use the Taylor expansion

(3.18) gt)=g(@)+g (x)(t—=2)+ / (t —u)g" (u) du.
By Theorem for z € (0,00) , we have
|Ln (9,7) — g (z)] = |Ln (/ (t—u)g" (u) du,x)‘

t+k

00 C itk
- TR ) g (u) dug (t) dtS,, k (x)
> ARG Y .

IN

" = ¢ t+k 2
19" i |5k 2| o dt S ()
k=0

o0

<2006l 19"l Y- { (5 —2)" + G2 } S ()

k=0
<200l (1+C%) (£ +72) 19" -
Taking the infimum over g € C?[0,00) N Cp, by we have
Lo (fa)-f@)| < inf ALy (f=g) |t I gl En (9,2) g ()]}

- g602 [0,00)OCB

< gecz[g‘i)m% { (L4+M)[If —glloo + M (£+ -5) ngHOO}

< ME> (f, 5+ 32)

n?

<M(2+5)%.

z
n
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Hence (3.17) holds. The proof of necessity is complete.
Sufficiency. Suppose that (3.17) holds. For d > 0, by (3.2)) we choose f; €

C?[0,0) N Cp such that
If = fallw < Mw2 (f,d),
£l < Md 2wy (f,d).
Let 0 <t < 1, x >t, n € N. Then, by (3 when x < Lemmas and.

we have

|AYf ()] <

< AL, (f) (@)] + [AF (f = Laf) (@)]

/ / Ly (f = fa.z +u+0) |dudv+/ / Ly, (fa, © + v+ v)| dudv
1 t t t
2 2 2 2

+1f (@ —=t) = Lo (f,z = 8)[+2|f (2) = Lo (f, )| + |f (x +1) = Ln (f, 2 + 1)

< mln{Mn2 Ilf— fd” £ s Mn || f — fd” / /t x+u+vdU’dv}
2

+ M| S]] 8 AM (24 L)?

n

wR

< M fallmin {25} 00 7)o+ 501 (e (528,25

R

< Mw? (f, )t2<max{% j}>_1-|-]\/fd_2<*/2 (f:d)tz“‘M(maX{xTH?#})
Letd:max{ %%} Then

[Af ()] <

< M {3228 )" 4 M (e {222, 1]) on 1o {222, 2)

Now for any ¢ € ( ) we choose n € N such that

g<max{\/z7ft 1}<6



140 Heinz H. Gonska and Ding-Xuan Zhou 10

Under this choice, we have
A3 ()] < M {or + MDY
which implies
wa (f,h) < M{&C%W}.
By the Berens-Lorentz Lemma (see [2], [5]), we have
wr (F,1) = O () (h—0).

Hence (3.16)) holds and the sufficiency is true.
The proof of Theorem [3.3]is complete. O

4. APPROXIMATION THEOREMS IN Lp

In this section, we give approximation theorems in L, (1 < p < o0o) for our
Szasz-type operators.

To state the equivalence result, we need the Ditzian-Totik K-functional de-
fined by

41)  Koo(fit), = inf { — gl +t]|2g" } £>0.
(4.1) w2 (= n o™ e, U =9l %",

This K-functional is equivalent to the Ditzian-Totik modulus of smoothness:
(4.2) MW (f,1), < Koo (f,17) < Mw? (f,1),

where 1 <p<oo, 0<t <1, feLy0,00).
Some Bernstein-Markov-type inequalities are also needed here.

LEMMA 4.1. Let 1 <p < oo, f € L,[0,00). Then we have

(4.3) [ L (DI, < ML
(4.4) le* Ly (N, < Mnf|fll,-

Proof of Lemma[d.1] By the Riesz-Thorin Theorem and Lemma we need
only to consider the case p = 1.

We note that for 0 < k < oo,
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/ Snk () dx = 1.

Let C < Cy € N. For f € L1]0,00), we have

\|Ln<f>|rls/ / Lk | 6]| _ df Sy () de
< 6l Z / B | gy
< 16l Co 1
Hence holds.

By (3.9)), we also have

oo c
Izl < [ Z/ 7 () 10l dt @ S (o) (U2 4 &) do

—Z/ ) ol {k [ sy (e 2kt
+n(k+ 1)/ Sn k1 () dm—}—n/o S k-1 () dm}

<26l Z/ L) gt

< 2Co [[plloe n I £l -

Hence (4.4) also holds.
The proof of Lemma is complete.

LEMMA 4.2. Let 1 <p<oo, f,f' € ACl.pe, ©*f" € L,. Then we have
(4.5) l* L (O], < M [, -

Proof of Lemma[£.2]. We prove only the case p = 1 again.
By (3.8) and (3.15)), for n > 8, we have

Ly (f)

I =

e ¢} C 1 1 -
SZ/ /"/” ,fu(t;k+u+u)|dudvdtn(k+1)/ S (2) dz [|¢]
<D R ’f“/// 2" (B w4 v) | dudvdt | o +

k=1
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/ / / uﬂ ’cp f” —|—u+v)‘du dv dt ||¢||
§2nH¢Hoo/0n/0" {Z/O }chf”(T+u+v)\dt} du dv
k=1

1,1 o
16, / / n / 12" ()| dy du do

<202 6|, //C’o||<P £, du do + 16l |62, 12
<M ||g*f"

Iy -

The proof of Lemma [4.2] is complete. O

We estimate the approximation order first for smooth functions.

THEOREM 4.3. Let 1 <p < oo, f' € A.Cupe, f',p2f" € L,. Then we have

(4.6) 12a () = £, < 2 (111, + Nl2"1,) -

Proof of Theorem [£.3] We denote the Hardy-Littlewood maximal function of a
locally integrable function g by

g () du

T

(7) M (g) (@) = sup e
t#x ’t (IZ‘

Let z > %, n € N. Then, by 1' we have

(/t(t—u)f”(u)du,x)‘

n

| Ln (f,2) = f ()] = |L

Bk | | £ (u)] dul |6 o dESn . (z)

sz /0 B2t S () I8l M (62£) (2)
k=0
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< { +24 } Cll¢llo M (97 f") ()
k=0
< 2(1+C?CH¢||OO M (2F") ().

Here we used the fact for u € [z,t] or [t,z],

|t — ul |t — x|
< .
U x

For 0 <z < %,We have

| Ln (f,2) =

e ([ 7w ane)
ki/ / 7' ()] du

0 C
<> [ 18 = o]t ol i () (1) )
k=0""0

1]l o dESn, 1 ()

A

k=0

< {C,f 1#llee +C Nl J S (E—w)" Sup (x)} M (f') (z)

< WOl pr (1) () .

n

Combining the above two cases, we have for x € [0, c0),

|Ln (fo2) = f(@)] < 55 (M (D2f") (2) + M(f) (),

which implies for 1 < p < oo
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1o (£) = £, < 32 (102 (22, + 1122 ()],

M 2
<4 (Jle21, +171,) -
The proof of Theorem [£.3] is complete. O

Finally, with all the above preliminary results, we state our main theorem in
this section.

THEOREM 4.4. Let f € L,[0,00) for 1 < p < oo and f € Cp for p = oo.
Then, for 0 < a < 1, we have

(4.8) 1L (f) = fll, = O (n™®)
if and only if
(4.9) Wi (f,1), = O ().

Proof of Theorem[£.4,. When 1 < p < 0o, we use the following inequality (see

)
(4.10) 1£0, < M (W1, + 62270,) 1> € ACge.

Then the proof for this case can be completed by the standard method (c.f. [5])
using Lemmas and Theorem

When p = oo, we use the following K-functional introduced by the second
author in [13]

Kia(h= it {1 =gl +t (1] + 1271}

By Lemmas and Theorem using the equivalence derived in
[11], we know that (4.8) holds if and only if

K2 (f,t) =0(t%),

which is equivalent to (4.9).
The proof of Theorem [4.3]is complete. O

It can thus be seen our Szasz-type operators have the advantages of both
Szasz-Mirakjan operators and Szdsz-Kantorovich or Durrmeyer operators.
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