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1. INTRODUCTION

The Szász-Mirakjan operators are defined on C[0,∞) as

Sn (f, x) =
∞∑
k=0

f
(
k
n

)
Sn,k (x) ,(1.1)

Sn,k (x) = e−nx (nx)k

k! .

There has been an extensive study on the approximation by these operators. In
1978, Beker [1] extended a result of Berens and Lorentz [2] to the interval [0,∞)
and showed that for f ∈ CB := C[0,∞) ∩ L∞[0,∞), 0 < α < 2,

(1.2) ω2 (f, t) = O (tα) ⇔ |Sn (f, x)− f (x)| ≤M
(
x
n

)α
2 .

Here M is a constant independent of n ∈ N and x ∈ [0,∞), ω2 (f, t) is the
modulus of smoothness defined as

ω2 (f, t) = sup
0<h<t

∥∥42
hf (·)

∥∥
∞ ,(1.3)

42
hf (x) =

f (x+ h)− 2f (x) + f (x− h) , when h ≤ x,

0, otherwise.

By (1.2), we know that the second-order Lipschitz functions (i.e., the Lips-
chitz functions with respect to the second-order modulus of smoothness) can be
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characterized by the rate of convergence of Szász-Mirakjan operators. Another
interesting result was given by Totik [10] in 1983 who proved the following
equivalence:

(1.4) ω2
ϕ (f, t)∞ = O (tα) ⇔ ‖Sn (f)− f‖∞ = O

(
n−

α
2
)
, 0 < α < 2.

Here ω2
ϕ (f, t)∞ is the so-called Ditzian-Totik modulus of smoothness, which is

defined for 1 ≤ p ≤ ∞ as

ω2
ϕ (f, t)p = sup

0<h<t

∥∥42
hϕ(x)f (x)

∥∥
p
,(1.5)

ϕ (x) =
√
x.

The Szász-Mirakjan operators can not be used for Lp (1 ≤ p ≤ ∞)-approximation.
For this purpose, we must modify these operators. Two versions of this type
are Szász-Kantorovich operators:

(1.6) Kn (f, x) :=
∞∑
k=0

n

∫ k+1
n

k
n

f (t) dt Sn,k (x)

and Szász-Durrmeyer operators:

(1.7) Dn (f, x) :=

∞∑
k=0

n

∫ ∞
0

f (t)Sn,k (t) dt Sn,k (x) .

These operators can be used for Lp-approximation on [0,∞). In fact, for Ln =
Kn or Dn, 0 < α < 2, 1 ≤ p <∞, f ∈ Lp[0,∞), we have (c.f., [5], [7])

(1.8) ω2
ϕ (f, t)p = O (tα) ⇔ ‖Ln (f)− f‖p = O

(
n−

α
2
)
.

Parallel to Szász-Mirakjan operators, it is natural to consider characteriza-
tions of Lipschitz functions by means of the above two versions of Szász-type
operators. Early in 1985, Mazhar and Totik [9] modified the Szász-Durrmeyer
operators and gave the same equivalence to (1.2). However, their modified op-
erators have the disadvantage that they can not be used for Lp-approximation.
In fact, for the original Szász-Durrmeyer operators (1.7), Mazhar and Totik
[9] posed the open problem to find an inverse theorem to the following direct
estimate:

(1.9)
∣∣Dn (f, x)− f (x)

∣∣ ≤Mω1

(
f,
√

x
n + 1

n2

)
.

Here ω1 (f, t) is the modulus of continuity:

(1.10) ω1 (f, t) = sup
0<h<t

∥∥f (·+ h)− f (·)
∥∥
∞.



3 Szász-type operators 133

In 1991, Guo and the second author [6] solved this problem and showed that
for 0 < α < 1, f ∈ CB,

(1.11) ω1(f, t) = O (tα) ⇔
∣∣Dn (f, x)− f (x)

∣∣ ≤M (
x
n + 1

n2

)α
2 .

This is the first characterization of Lipschitz functions by means of linear oper-
ators which do not reproduce linear functions. Extensions to higher orders of
Lipschitz functions and some other discussions can be found in a series of the
second author’s (joint) papers [8], [11], [12], [14]. On the other hand, we also
showed that for any 1 < α < 2, there exist no functions {Ψn,α (x)}n∈N such that

(1.12) ω2 (f, t) = O (tα) ⇔
∣∣Dn (f, x)− f (x)

∣∣ ≤MΨn,α (x) .

Thus, the second-order Lipschitz functions can not be characterized by means of
Szász-Durrmeyer operators when 1 < α < 2. This happens also for Kantorovich
operators, see [14]. To overcome this difficulty, Ye and the second author [11]
introduced a technique of matrices and modified the Kantorovich operators so
that they can be used for characterization of second-order Lipschitz functions
as well as for Lp-approximation.

The puropose of this paper is to introduce a class of Szász-type operators
by means of Daubechies’ compactly supported wavelets (see [3], [4]). These
operators have the following advantages: Firstly, they have the same moments
of finitely many orders as we arbitrarily choose as Szász-Mirakjan operators,
hence they can be used to characterize the second-order Lipschiz functions.
Secondly, they can be used for Lp-approximation (1 < p ≤ ∞) and a similar
result to (1.8) holds.

In the following sections we discuss these two aspects. We shall denote by M
a constant which may be different at each occurrence.

2. CONSTRUCTION OF SZÁSZ-TYPE OPERATORS BY WAVELETS

We recall some facts about Daubechies’ compactly supported wavelets (see
[3], [4]).

Given N ∈ N, Daubechies’ compactly supported scaling wavelet Nφ is defined
by the following refinement equation

φ (·) = 2

∞∑
k=0

hkφ (2 · −k) ,(2.1)

φ (0) = 1,

where {hk}k∈Z is the finitely sequence given by
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∞∑
k=0

hke
−ikω =

(
1+e−iω

2

)NLN (ω)

with ∣∣LN (ω)
∣∣2 = PN

(
sin2 ω

2

) N∑
n=0

(
N−1+n

n

) (
sin2 ω

2

)n
.

This function is compactly supported with supp Nφ = [0, 2N − 1] . Moreover,
there exists a positive constant β > 0 such that for N ≥ 2, Nφ ∈ CβN (R) and
for 1 ≤ k ≤ βN,

(2.2)

∫
R
xk Nφ (x) dx = 0.

In particular, when N = 1, 1φ = χ[0,1] is the classical Haar basis.
In what follows, we assume that φ ∈ L∞ (R) has the following properties:

(i) suppφ ⊂ [0, C] with 0 < C <∞.
(ii)

∫
R
φ (x) dx = 1, and, for 1 ≤ k ≤ K, (2.2) is satisfied where K ∈ N.

Then, our Szász-type operators are defined as

(2.3) Ln (f, x) :=
∞∑
k=0

n

∫
R
f (t)φ (nt− k) dtSn,k (x) .

When K = 0, and φ is the Haar basis, these operators are exactly the Szász-
Kantorovich operators. Thus, we see that our operators are extensions of the
Szász-Kantorovich operators.

By the moment condition (ii), we have the following theorem.

Theorem 2.1. Let Ln (f (t) , x) be defined by (2.3). Then, for 0 ≤ k ≤ K, we
have

(2.4) Ln
(
tk, x

)
= Sn

(
tk, x

)
, x ∈ [0,∞).

In particular,

(2.5) Ln (1, x) = 1;

(2.6) Ln (t, x) = x.

The moment condition (2.4) is the main improvement to Szász-Kantorovich
and Szász-Durrmeyer operators.
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3. CHARACTERIZATION OF SECOND-ORDER LIPSCHITZ FUNCTIONS

We need some preliminary results to state our main result in this section.
For our proof, we need Peetre’s K-functional given by

(3.1) K2 (f, t) := inf
g∈C2[0,∞)∩CB

{
‖f − g‖∞ + t

∥∥g′′∥∥∞ }, t > 0.

Since for g /∈ L∞[0,∞), ‖f − g‖∞ = ∞, this K-functional is equivalent to the
modulus of smoothness:

(3.2) M−1ω2 (f, t) ≤ K2(f, t2) ≤Mω2 (f, t) , f ∈ CB, 0 < t ≤ 1.

Two types of Bernstein-Markov inequalities are necessary for our purpose, which
we state as follows.

Lemma 3.1. Let f ∈ CB. Then we have

‖Ln (f)‖∞ ≤M ‖f‖∞ ;(3.3) ∥∥L′n (f)
∥∥
∞ ≤Mn ‖f‖∞ ;(3.4) ∥∥L′′n (f)
∥∥
∞ ≤Mn2 ‖f‖∞ ;(3.5) ∥∥ϕ2L′′n (f)
∥∥
∞ ≤Mn ‖f‖∞ .(3.6)

Proof of Lemma 3.1. We observe that

(3.7) Ln (f, x) =
∞∑
k=0

∫ C

0
f
(
t+k
n

)
φ (t) dtSn,k (x) .

Therefore, for f ∈ CB, x ∈ [0,∞),∣∣Ln (f, x)
∣∣ ≤ ∞∑

k=0

∫ C

0
|φ (t)| dtSn,k (x) ‖f‖∞ ≤ C ‖φ‖∞ ‖f‖∞ .

Hence (3.3) holds.
To prove (3.4) and (3.5), we observe that

(3.8) S′n,k (x) = n
(
Sn,k−1 (x)− Sn,k (x)

)
.

Here we set Sn,−1 (x) ≡ 0. Then for f ∈ CB, x ∈ [0,∞),∣∣L′n (f, x)
∣∣ =

∣∣∣∣∣n
∞∑
k=0

∫ C

0
f
(
t+k
n

)
φ (t) dt

(
Sn,k−1 (x)− Sn,k (x)

)∣∣∣∣∣
≤ 2nC ‖φ‖∞ ‖f‖∞ ,
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and∣∣L′′n (f, x)
∣∣ =

∣∣∣∣∣n2
∞∑
k=0

∫ C

0
f
(
t+k
n

)
φ (t) dt

(
Sn,k−2 (x)− 2Sn,k−1 (x) + Sn,k (x)

)∣∣∣∣∣
≤ 4n2C ‖φ‖∞ ‖f‖∞ .

Hence (3.4) and (3.5) hold.
Finally, using another expression for the derivative, namely

(3.9) S′n,k (x) = k−nx
x Sn,k (x) ,

we obtain (3.6):∣∣ϕ2 (x)L′′n (f, x)
∣∣ =

∣∣∣∣∣x
∞∑
k=0

∫ C

0
f
(
t+k
n

)
φ (t) dtSn,k (x)

(
(k−nx)2

x2
− k

x2

)∣∣∣∣∣
≤ C ‖φ‖∞ ‖f‖∞

1
x

∞∑
k=0

[
(k − nx)2 + k

]
Sn,k (x)

≤ 2nC ‖φ‖∞ ‖f‖∞ .

Here we used the moments of Szász-Mirakjan operators:

Sn (t, x) = x,(3.10)

Sn
(

(t− x)2 , x
)

= x
n .(3.11)

The proof of Lemma 3.1 is complete. �

Lemma 3.2. Let f ∈ C2[0,∞) ∩ CB. Then we have∥∥L′n (f)
∥∥
∞ ≤M

∥∥f ′∥∥∞ ;(3.12) ∥∥L′′n (f)
∥∥
∞ ≤M

∥∥f ′′∥∥∞ ;(3.13) ∥∥ϕ2L′′n (f)
∥∥
∞ ≤M

∥∥ϕ2f ′′
∥∥
∞ .(3.14)

Proof of Lemma 3.2. By (3.7) and (3.8), for x ∈ [0,∞), we have∣∣L′n (f, x)
∣∣ =

∣∣∣∣∣
∞∑
k=0

n

∫ C

0

[
f
(
t+k+1
n

)
− f

(
t+k
n

)]
φ (t) dtSn,k (x)

∣∣∣∣∣
≤ C ‖φ‖∞

∥∥f ′∥∥∞ ,
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and

∣∣L′′n (f, x)
∣∣ =

∣∣∣∣∣
∞∑
k=0

n2

∫ C

0

[
f
(
t+k+2
n

)
− 2f

(
t+k+1
n

)
+ f

(
t+k
n

)]
φ (t) dtSn,k (x)

∣∣∣∣∣
≤ C ‖φ‖∞

∥∥f ′′∥∥∞ .
To prove (3.14), we need the following inequality derived from a result of Becker
[1]:

(3.15)

∫ h

0

∫ h

0

1
x+u+vdu dv ≤

6h2

(x+2h)(1−x−2h)

with 0 < h ≤ 1
8 , 0 ≤ x ≤ 1− 2h.

Then, for n ≥ 8, x ∈ (0,∞), using (3.15) with x = 0, h = 1
n , we have

∣∣ϕ2 (x)L′′n (f, x)
∣∣ =

∣∣∣∣∣xn2
∞∑
k=0

∫ C

0

∫ 1
n

0

∫ 1
n

0
f ′′
(
t+k
n + u+ v

)
dudv φ (t) dt Sn,k (x)

∣∣∣∣∣
≤ xn2

∞∑
k=0

∫ C

0

∫ 1
n

0

∫ 1
n

0

1
t+k
n

+u+v
du dv dt Sn,k (x) ‖φ‖∞

∥∥ϕ2f ′′
∥∥
∞

≤ x ‖φ‖∞
∥∥ϕ2f ′′

∥∥
∞

{
C
∞∑
k=1

n
kSn,k (x) + 12CnSn,0 (x)

}

≤ C ‖φ‖∞
∥∥ϕ2f ′′

∥∥
∞

{ ∞∑
k=1

2Sn,k+1 (x) + 12Sn,1 (x)

}

≤ 12C ‖φ‖∞
∥∥ϕ2f ′′

∥∥
∞ .

In the case n < 8, (3.14) is easily derived from (3.6).
The proof of Lemma 3.2 is complete. �

With the above preparations, we can state our characterization theorem as
follows.

Theorem 3.3. Let 0 < α < 2, f ∈ CB, Ln (f, x) be given by (2.3). Then
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(3.16) ω2 (f, t) = O (tα)

if and only if

(3.17)
∣∣Ln (f, x)− f (x)

∣∣ ≤M (
x
n + 1

n2

)α
2 .

Proof of Theorem 3.3. Necessity. Suppose that (3.16) holds. By (3.1) , we know
that for 0 < t < 1,

K2 (f, t) ≤Mt
α
2 .

Let g ∈ C2[0,∞) ∩ CB. We use the Taylor expansion

(3.18) g(t) = g (x) + g′ (x) (t− x) +

∫ t

x
(t− u) g′′ (u) du.

By Theorem 2.1 for x ∈ (0,∞) , we have

|Ln (g, x)− g (x)| =
∣∣∣∣Ln(∫ t

x
(t− u) g′′ (u) du, x

)∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∫ C

0

∫ t+k
n

x

(
t+k
n − u

)
g′′ (u) duφ (t) dtSn,k (x)

∣∣∣∣∣
≤
∥∥g′′∥∥∞ ∞∑

k=0

∫ C

0

∣∣ t+k
n − x

∣∣2 ‖φ‖∞ dt Sn,k (x)

≤ 2C ‖φ‖∞
∥∥g′′∥∥∞ ∞∑

k=0

{(
k
n − x

)2
+ C2

n2

}
Sn,k (x)

≤ 2C ‖φ‖∞
(
1 + C2

) (
x
n + 1

n2

) ∥∥g′′∥∥∞ .
Taking the infimum over g ∈ C2[0,∞) ∩ CB, by (3.3) we have∣∣Ln (f, x)−f (x)

∣∣ ≤ inf
g∈C2[0,∞)∩CB

{
‖Ln (f−g)‖∞+‖f−g‖∞+

∣∣Ln (g, x)−g (x)
∣∣}

≤ inf
g∈C2[0,∞)∩CB

{
(1 +M) ‖f − g‖∞ +M

(
x
n + 1

n2

) ∥∥g′′∥∥∞ }
≤MK2

(
f, xn + 1

n2

)
≤M

(
x
n + 1

n2

)α
2 .
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Hence (3.17) holds. The proof of necessity is complete.
Sufficiency. Suppose that (3.17) holds. For d > 0, by (3.2) we choose fd ∈

C2[0,∞) ∩ CB such that

‖f − fd‖∞ ≤Mω2 (f, d) ,∥∥f ′′∥∥∞ ≤Md−2ω2 (f, d) .

Let 0 < t ≤ 1
8 , x > t, n ∈ N. Then, by (3.15) when x ≤ 1

2 , Lemmas 3.1 and 3.2,
we have∣∣∆2

t f (x)
∣∣ ≤

≤
∣∣∆2

tLn (f) (x)
∣∣+
∣∣∆2

t (f − Lnf) (x)
∣∣

≤
∫ t

2

− 1
2

∫ τ
2

− t
2

∣∣L′′n (f − fd, x+ u+ v)
∣∣ dudv +

∫ t
2

− t
2

∫ t
2

− t
2

∣∣L′′n (fd, x+ u+ v)
∣∣ dudv

+ |f (x− t)− Ln (f, x− t)|+ 2 |f (x)− Ln (f, x)|+ |f (x+ t)− Ln (f, x+ t)|

≤ min

{
Mn2 ‖f − fd‖∞ t

2,Mn ‖f − fd‖∞
∫ t

2

t
2

∫ t
2

− t
2

1
x+u+vdudv

}

+M
∥∥f ′′d ∥∥∞ t2 + 4M

(
x+t
n + 1

n2

)α
2

≤Mn ‖f − fd‖∞min
{
nt2, 12t2

x+t

}
+M

∥∥f ′′d ∥∥∞ t2 + 8M
(

max
{
x+t
n , 1

n2

})α2
≤Mω2 (f, d) t2

(
max

{
1
n2 ,

x+t
n

})−1
+Md−2ω2 (f, d) t2+M

(
max

{
x+t
n , 1

n2

})α2
.

Let d = max
{√

x+t
n , 1n

}
. Then∣∣∆2

t f (x)
∣∣ ≤

≤M
(

max
{√

x+t
n , 1

n

})α
+Mt2

(
max

{√
x+t
n , 1

n

})−2
ω2

(
f,max

{√
x+t
n , 1

n

})
.

Now for any δ ∈
(
0, 1

8

)
, we choose n ∈ N such that

δ
2 < max

{√
x+t
n , 1

n

}
≤ δ.
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Under this choice, we have∣∣∆2
t f (x)

∣∣ ≤M {
δα + h2ω2(f,δ)

δ2

}
,

which implies

ω2 (f, h) ≤M
{
δα + h2ω2(f,δ)

δ2

}
.

By the Berens-Lorentz Lemma (see [2], [5]), we have

ω2 (f, h) = O (hα) (h→ 0) .

Hence (3.16) holds and the sufficiency is true.
The proof of Theorem 3.3 is complete. �

4. APPROXIMATION THEOREMS IN Lp

In this section, we give approximation theorems in Lp (1 < p ≤ ∞) for our
Szász-type operators.

To state the equivalence result, we need the Ditzian-Totik K-functional de-
fined by

(4.1) Kϕ,2 (f, t)p = inf
g,g′∈A.C.loc,ϕ2g′′∈Lp

{
‖f − g‖p + t

∥∥ϕ2g′′
∥∥
p

}
, t > 0.

This K-functional is equivalent to the Ditzian-Totik modulus of smoothness:

(4.2) M−1ω2
ϕ (f, t)p ≤ Kϕ,2

(
f, t2

)
≤Mω2

ϕ (f, t) ,

where 1 ≤ p ≤ ∞, 0 < t < 1, f ∈ Lp[0,∞).
Some Bernstein-Markov-type inequalities are also needed here.

Lemma 4.1. Let 1 ≤ p ≤ ∞, f ∈ Lp[0,∞). Then we have

‖Ln (f)‖p ≤M ‖f‖p ;(4.3) ∥∥ϕ2L′′n (f)
∥∥
p
≤Mnf ‖f‖p .(4.4)

Proof of Lemma 4.1. By the Riesz-Thorin Theorem and Lemma 3.1, we need
only to consider the case p = 1.

We note that for 0 ≤ k <∞,
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∫ ∞
0

Sn,k (x) dx = 1.

Let C ≤ C0 ∈ N. For f ∈ L1[0,∞), we have

‖Ln (f)‖1 ≤
∫ ∞

0

∞∑
k=0

∫ C

0

∣∣f ( t+kn )∣∣ ‖φ‖∞ dt Sn,k (x) dx

≤ ‖φ‖∞
∞∑
k=0

1
n

∫ C

0

∣∣f ( t+kn )∣∣ dt
≤ ‖φ‖∞C0 ‖f‖1 .

Hence (4.3) holds.
By (3.9), we also have∥∥ϕ2L′′n (f)

∥∥
1
≤
∫ ∞

0

∞∑
k=0

∫ C

0

∣∣f ( t+kn )∣∣ ‖φ‖∞ dt x Sn,k (x)
(

(k−nx)2

x2
+ k

x2

)
dx

=
∞∑
k=0

∫ C

0

∣∣f ( t+kn )∣∣ ‖φ‖∞ dt{k n∫ ∞
0

Sn,k−1 (x) dx− 2k+

+ n (k + 1)

∫ ∞
0

Sn,k+1 (x) dx+ n

∫ ∞
0

Sn,k−1 (x) dx

}
≤ 2 ‖φ‖∞

∞∑
k=0

∫ C0

0

∣∣f ( t+kn )∣∣ dt
≤ 2C0 ‖φ‖∞ n ‖f‖1 .

Hence (4.4) also holds.
The proof of Lemma 4.1 is complete. �

Lemma 4.2. Let 1 ≤ p ≤ ∞, f, f ′ ∈ A.C.loc, ϕ2f ′′ ∈ Lp. Then we have

(4.5)
∥∥ϕ2L′′n (f)

∥∥
p
≤M

∥∥ϕ2f ′′
∥∥
p
.

Proof of Lemma 4.2. We prove only the case p = 1 again.
By (3.8) and (3.15), for n ≥ 8, we have∥∥ϕ2L′′n (f)

∥∥
1
≤

≤
∞∑
k=0

∫ C

0

∫ 1
n

0

∫ 1
n

0

∣∣f ′′ ( t+kn + u+ v
)∣∣ dudvdt n (k + 1)

∫ ∞
0

Sn,k+1 (x) dx ‖φ‖∞

≤
∞∑
k=1

n
k (k + 1)

∫ C

0

∫ 1
n

0

∫ 1
n

0

∣∣ϕ2f ′′
(
t+k

2 + u+ v
)∣∣ dudvdt ‖φ‖∞+
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+

∫ C

0

∫ 1
n

0

∫ 1
n

0

1
u+v

∣∣ϕ2f ′′
(
t
n + u+ v

)∣∣ du dv dt ‖φ‖∞
≤ 2n ‖φ‖∞

∫ 1
n

0

∫ 1
n

0

{ ∞∑
k=1

∫ C

0

∣∣ϕ2f ′′
(
t+k
n + u+ v

)∣∣ dt} du dv
+ ‖φ‖∞

∫ 1
n

0

∫ 1
n

0

n
u+v

∫ ∞
0

∣∣ϕ2f ′′ (y)
∣∣ dy du dv

≤ 2n2 ‖φ‖∞
∫ 1

n

0

∫ 1
n

0
C0

∥∥ϕ2f ′′
∥∥

1
du dv + n ‖φ‖∞

∥∥ϕ2f ′′
∥∥

1
12
n

≤M
∥∥ϕ2f ′′

∥∥
1
.

The proof of Lemma 4.2 is complete. �

We estimate the approximation order first for smooth functions.

Theorem 4.3. Let 1 < p ≤ ∞, f ′ ∈ A.C.loc, f ′, ϕ2f ′′ ∈ Lp. Then we have

(4.6) ‖Ln (f)− f‖p ≤
M
n

(∥∥f ′∥∥
p

+
∥∥ϕ2f ′′

∥∥
p

)
.

Proof of Theorem 4.3. We denote the Hardy-Littlewood maximal function of a
locally integrable function g by

(4.7) M (g) (x) = sup
t6=x

∣∣∣∣∫ t

x
|g (u)| du

∣∣∣∣
|t− x|

.

Let x > 1
n , n ∈ N. Then, by (3.18) we have

|Ln (f, x)− f (x)| =
∣∣∣∣Ln(∫ t

x
(t− u) f ′′ (u) du, x

)∣∣∣∣
≤
∞∑
k=0

∫ C

0

∣∣∣∣∣
∫ t+k

n

n

∣∣ t+k
n − u

∣∣ ∣∣f ′′ (u)
∣∣ du∣∣∣∣∣ ‖φ‖∞ dtSn,k (x)

≤
∞∑
k=0

∫ C

0

| t+kn −x|
2

x dt Sn,k (x) ‖φ‖∞M
(
ϕ2f ′′

)
(x)
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≤

{
2
∞∑
k=0

( kn−x)
2

x Sn,k (x) + 2 C2

n2x

}
C ‖φ‖∞M

(
ϕ2f ′′

)
(x)

≤ 2(1+C2)C‖φ‖∞
n M

(
ϕ2f ′′

)
(x) .

Here we used the fact for u ∈ [x, t] or [t, x] ,

|t− u|
u

≤ |t− x|
x

.

For 0 ≤ x < 1
n , we have

|Ln (f, x)− f (x)| =
∣∣∣∣Ln(∫ t

x
f ′ (u) du, x

)∣∣∣∣
≤
∞∑
k=0

∫ C

0

∣∣∣∣∣
∫ t+k

n

x

∣∣f ′ (u)
∣∣ du∣∣∣∣∣ ‖φ‖∞ dtSn,k (x)

≤
∞∑
k=0

∫ C

0

∣∣ t+k
n − x

∣∣ dt ‖φ‖∞ dtSn,k (x)M(f ′) (x)

≤

C2

n ‖φ‖∞ + C ‖φ‖∞

√√√√ ∞∑
k=0

(
k
n − x

)2
Sn,k (x)

M
(
f ′
)

(x)

≤ (1+C)C‖φ‖∞
n M(f ′) (x) .

Combining the above two cases, we have for x ∈ [0,∞),

|Ln (f, x)− f (x)| ≤ M
n

(
M
(
ϕ2f ′′

)
(x) +M(f ′) (x)

)
,

which implies for 1 < p ≤ ∞
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‖Ln (f)− f‖p ≤
M
n

(∥∥M (
ϕ2f ′′

)∥∥
p

+
∥∥M (

f ′
)∥∥
p

)
≤ M

n

(∥∥ϕ2f ′′
∥∥
p

+
∥∥f ′∥∥

p

)
.

The proof of Theorem 4.3 is complete. �

Finally, with all the above preliminary results, we state our main theorem in
this section.

Theorem 4.4. Let f ∈ Lp[0,∞) for 1 < p < ∞ and f ∈ CB for p = ∞.
Then, for 0 < α < 1, we have

(4.8) ‖Ln (f)− f‖p = O
(
n−α

)
if and only if

(4.9) ω2
ϕ (f, t)p = O

(
t2α
)
.

Proof of Theorem 4.4. When 1 < p < ∞, we use the following inequality (see
[5])

(4.10)
∥∥f ′∥∥

p
≤M

(
‖f‖p +

∥∥ϕ2f ′′
∥∥
p

)
, f, f ′ ∈ A.C.loc.

Then the proof for this case can be completed by the standard method (c.f. [5])
using Lemmas 4.1, 4.2 and Theorem 4.3.

When p = ∞, we use the following K-functional introduced by the second
author in [13]

K1,2 (f, t) = inf
g∈C2[0,∞)∩CB

{
‖f − g‖∞ + t

(∥∥g′∥∥∞ +
∥∥ϕ2f ′′

∥∥
∞
)}
.

By Lemmas 3.1, 3.2, 4.1, 4.2 and Theorem 4.3, using the equivalence derived in
[11], we know that (4.8) holds if and only if

K1,2 (f, t) = O (tα) ,

which is equivalent to (4.9).
The proof of Theorem 4.3 is complete. �

It can thus be seen our Szász-type operators have the advantages of both
Szász-Mirakjan operators and Szász-Kantorovich or Durrmeyer operators.
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