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1. INTRODUCTION, NOTATION AND HYPOTHESES

This work concerns the convergence of solutions to algebraic Riccati
equations:

(1.1) AP, + P4y - BBBB, + CiCy = 0,

to the solution P to the equation:

(1.2) A*¥*P+PA-PBB*P+C*C=0,

when {4,}, {B,}, {C,} are converging in the sense of graph to 4, B, and C respec-
tively, when A\0. Equations (1.1), (1.2) are relevant in feedback stabilization of
the linear dynamic system: -

(1.3) x'(£) = Ax(®) + Bu(t) , x(0) = x,.

The main results assert that under suitable assumptions, the solutions to (1.1)
converge in a weak sense to the solution to (1 2),and u, = -B} Fx , for h small,
is a stabilizing feedback controller for system (1.3).

Anapplication to a control system governed by a functional differential equa-
tion is given. :

Consider three Hilbert spaces together with their norms: (X e ||) — the state
space, (U , | J I) — the control space, and (Z ," . ”Z —the observation space.

As in [11], G(M,0) denotes the class of operators A: D(4) ¢ X — X which
are infinitesimal generators of Cj—semigroups, {S(?); 12 0}, satisfying ”S(t) " <M
exp(@?), where M and o are real constants, M2 1, @ = 0.
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Consider the following regulator problem: given the dynarnical system (1.3),
minimize the quadratic functional: :

(14) T j:’(” cx(o)[] +,u(t),7')dt,

overall u € L? (0, +oo; U) and x solution to (1.3) corresponding to w.
Related to this control problem, we consider the following approximating
quadratic problem: minimize the functional: '

(1.5) Ty (v, x3,) = J.(:o(" Crxp (1) “; + lu(z),z)dt,

over all u € L2 (0, +oo; U) and x, solution corresponding to u of the approximate
dynamical system:

e *n () = Ay 3 (6) + B u(t), %,(0) = xo,

where 4 is a small parameter.

For the operators considered above, we make the following assumptions:
() 4, 4, € G(M,®), for all h, and there exists Ay € C, R, > @ such that:

(1.7) R(Xg; 4,)x = R(Ay;A)x , when /10, for all xe X,
(R(A; A4) is the resolvent operator associated to 4,ie, (M—-A)1

(ii) B, B,, C, C, are linear bounded operators for all h, B, B, € (U, X),
G C, € HX,Z), and:

(1.8) Bju — Bu , B*,x — B*x as h\.0,

forallu € Uand x € X,

(1.9) C*,Cyx — C*Cx, as In0, for all x e X,
(iit) (detectability)

There exist K, K, € ¥(Z,X), linear bounded operators such that the operators
A+KCand 4, + K, C, generate exponentially stable semigroups, for all 4.
(iv) (uniform stabilizability)

There exists F € P(X,U) a bounded linear operator, s.t. 4, + B, F, and A + BF
generate exponentially stable semigroups, {S, 7(0); 120}, and {S{0); 120} respec-

tively, when / is small enough, i.c., there exist two real constants, M, > 1, @, >0
such that:

(1.10) ”S,,,F (t)"SMl exp(-mlt), for ali >0,
(1.11) “SF (t)“SMlexp(—a)lt), for all >0,
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ions, it i trol problems (1.3), (1.4),
der these assumptions, it is known ([2]) that the con (
gﬁi (6;5), (1.6) have unique optimal pairs (x*,u*), and (x Tou ’,',‘) respectively,
related by the feedback laws:
(1.12)  w*(t)=-B*Px*(t), u*,()=~B*Ppx*, 1), 1>0, for all A,

i joi itive operators, solutions to
here P, P, € F(X) are lincar bounded selfadjoint, posi .
tvlvle algebra’i’c Riccati equations (1.2) and (1.1) respectively. We also have:

(1.13) (Pxo,xo)zéJ(u*,x" ), for all xg € X,

1
(1.14) (Iallxﬂ’xO):EJh(u)il ’x’il )’ for all xp € X,

where J and Jj, are given in (1.4) and (1 .5) respectively, x,=x*(0) =x*,(0), and
..-) denotes the inner product in X.
i The detectability assumption (iii) ensures that the operators 4 - BB*P, and
A, - B,B*, P, generate exponentially stable semigroups. i
! Ihf Ahe hG(M,O)) and {S (1);22 0} is the semigroup generated by 4 , we
say that the operator A, “satisfies the spectral determining growth condition

if (see [13]):

(1.15) 0o(5) =s(4),
where m0(§) =inf {ln"f(t)” s> 0}
~\ _ Jsup{RA;A ec(Z) if G(Z) #
S(A) » {—oo { } otherwise

A A4 ver A i infinitesi-
and © (A) dqnotes the spectrum of the operator 4. Whenever 4 is the infini

mal generator of a Cy-semigroup, then s(A) <o (S ) The equality holds, for
example, when (see e.g. [3]):

1) 4 is bounded; 3

2) There exists £, > 0 s.t. S(fp) is compact;

3) F(r);t >0} is a differential semigroup;

4) {S(2);t = 0} is an analytic semigroup.

2. MAIN RESULTS

The main convergence result is the following:
THEOREM 1. Assume (i), (ii), (iii) and (iv) hold. Then:

2.1 Pyxo — Pxy , weakly in X as h A0, forall x, € X,
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where P and P, are the linear, bounded, selfadjoint, positive operators, solutions
to the Riccati equations (1.2) and (1.1) respectively.

Proving this result is not enough. In fact, there is a complete theory of con-
vergence for problems of this type (for more details and references see [4]). More
interesting, for practical purpose, is to show that the approximate feedback law
stabilizes the initial system (1.3), i.e., to prove that the operator 4 — BB* P, gene-
rates an exponentially stable semi group, for / small enough, When 4 generates an

analytic semigroup, under some natural approximating assumptions, this kind of
result was established in [9)].

We shall prove a uniform stability result, using the spectral determining
growth (s.d.g.) condition. Relation (1.15) tells that one can study the asymptotic

behaviou~r of the semigroup generated by A4 only by the knowledge of the spec-
trum of A4, as in finite dimension,

We denote by p(4) the resolvent set of the operator 4. The uniform stability
result derives from the next theorem.,

THEOREM 2. Let 4,: D(A4,) € X — X be an infinitesimal generator of a
Co-semigroup and {T,} ¢ H(X) a sequence of linear bounded operators on X,

Assume that:
1. A, + T, satisfy the s.d.g. condition Sorall h;
2. A, generates an exponentially stable semigroup;
3. There exists Ay & p(A 1)5.1. the Fesolvent operator of 41, R(\y; A)) is compact,
4.T,x — 0 weakly in X as b\ O,foralix e X
Thend4,+ T, » generate exponentially stable semigroups if his small enough.
COROLLARY. Assume (i), (ii), (iii), and (iv). Suppose also that:
(o) There exists Ay € p(A) such that the resolvent operator R(A;; 4) is
compact,
(B) The operators A — BR* ,,P,; satisfy the s.d.g. condition for all b,
Then 4 - BB*,P, generate exponentially stable semigroups if h is small enough.
Taking4, =4 - BB*Pand T » = BB*P— BB* 4w, in Theorem 2 we obtain the
Corollary.

To prove Theorem 2 we need the following lemma, which probably is not
new, but we did not find any mention about it in literature.

LEMMA. Let 4, : D(4 D S X > X bea linear closed operator and {1,} ¢ F(X)
a sequence of linear bounded operators on X. Assume that:

(@) There exists Ay € p(A)) such that the resolvent operaior R(A;A,) is
compact, j

(b) The sequence {T, 1)} is pointwise wealkly convergent 1o 0, i.e.,
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T)x — 0, weaklyinXash AQ, forallx e X
Ifs(4,) <0 then s(4, + T},) < 0 when h is small enough.

3.PROOFS

Proof of Theorem 1: We know that the operators P, can a}so be defined using
the optimality system. Consider the optimality system corresponding to problem (1.5),

(1.6):
% () = 4y 3, (2) + By By p 1, (1),£ > 0
3.1 Py(t)= =4y pp(8)+ C, Cyxp (2),2 > 0
7,(0) = xo, Jim py (1) = 0
then P, can be defined by:
Pixo =-p,(0), forallxy e X.

1

y .
We know that (3.1) has a unique solution (xh ) ph) , Py € L*(0, +o0; X) and:
*
(32) pi(t)=—Byx(2) , forall 120

Let x, be the solution to the system:
x50 = (A, + B, F)x,(8), t>0, x,(0)=x,,

or, if we use the notation in (iv)
x, (0= Sy, /(Oxy , 120.

Then by (iv)(1.10) we deduce that J,(Fx;,x;) < +oo. From (ii)( 1..9) and the uniforr;l
boundedness principle, we have that ”C,:” < ¢ for all 4 and using now (1.14) an
(iv)(1.10) we obtain that, for all A:

(P, 50) < Mol %0 € X
Thus we have:
(33) |Bll < 31 for all A.

. v * * ded
Relations (3.3) and (1.14) yield that the sequences {uh} and {Chfh} arze boun. e
in L2(0, +o0; U) and L?(0, +o0; Z) respectively. Hence, one can find # € L%(0, +o0;U)

such that: .
(34 W, - i weakly in L%0, +oo;U) as h A 0
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and also

3.5) X, (1) > %(2) Wéakly inXashAQO, foreach >0

where X is the mild solution correspondi

(3.6) Gy, — CE weakly in L3(0, +00;Z) as 4 A 0,

From (3.2) and (3.5) we deduce that the sequence {p,(#)} is bounded in X for each
t20, and so:

(3.7) Pu(t) = B(t) weakly in Xas 4 A 0, foreach >0,

where 7 satisfies:
p'(t)= —4*p(1)+C*Cx(1)

> >0
i.e., for some T'> 0 we have:

p(2) = S*(T - 1) p(T) —J;TS*(s— t)C*Cf(sjds, 0<t<T.

We denote by {S(2); ¢ > 0} and {8,
respectively.

From (3.1) we have that, for T > 0 arbitrary:

(9);£2 0} the semigroups generated by 4 and 4 4

T
2u (1) = SH(T - t)p/,(T)—J; Sh(s~1)C} Cyxy (s)ds, for 10,

Letting T — oo in the above relation, and knowing that lim p, (r) = 0 we obtain:
t—c0

o |
Pu(2) 5 —ft (s~ f)CZChx;(S)df-
We also know that:
u, (¢) = By oy (2), 220,

S0, one can consider p, as the solution to the following system:

Pu(t)=~(d; + B,F)* p, (1) +C, Gy (2) + F*uy (1),
ie.

[o o]
(3.8) o (t) =~ jt S (s = 1)(Ch Chxp (s) + o, (s))ds.
Using (1.10), (ii)(1.9), (3.6), (3.4) and the uniqueness of the weak-limit, letting
h A 0in (3.8) we deduce that: - :

Bt =[Sk (s~ 1)(C*Cx(s)+ Fra(s))as,

ngto # to thesystem (1.3). % satisfies also:

. 3
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7 . .
d by (1.11), p e L*0, +oo; X). Thus, the pair (J? ,ﬁ) satisfies the optimality
an . ) ’ )

system:

=l

'(zj = A%(r)+ BB* B (1),
()= -4+ p(9) +C*C3 (),
(0) = xg,lim p(z) = 0.

t—>©

L i~

The solution to this system being unique, we have that ()_c » 1‘4‘) is the optimal pair

x he problem (1.4), (1.3). " al
i 1212)12; ;I()t) = — Px*(f) where P is the linear, bounded, selfadjoint, positive

solution to (1.2). By (3.7) we have (2.1).

Proof of the Lemma. We shall prove that, for 4 small enough, we have the
following inclusion:

(3.9 p(d,) c pld, +T)).
Taking A €p(4,), we must show that the equation:
(3.10) M—-Ax-Tx=f

has a unique solution for each f' € X, in order to have (3.9). If we put y = Ax —A4x,
(3.10) is equivalent to:
(3.11) y-T,RMADy=f ik
] i for all L ep(4,), not only
deduce that R(A; 4,) is a compact operator,_ :
lf:c;(') r?{l=(a?)L W':ndeby (b) we have tilat the operator T,R(A; 4,) is also compact, for all
(L]

o %his (xtiI;)J.rovc that (3.11) has a unique solution for each f'€ X one can use the

. . . s .f
Fredholm alternative, which says that (3.11) has a unique solution if and only i

the equation:
(3.12) z—R(W;Ar)T;Z.ZO

ly the trivial solutionz, =0. 3 :
- OnSzpposc by absurd, that there exists z, € X, Ilz,," =1 such that:

i ¥\ %
(3.13) zh—R(K;Al)Thzh =0

The sequence {z,} being bounded (”Zh" = 1) it is weakly convergent:
(3.14) z, =2, weakly in X as ANO.

. Y .
Because R(A;4,) is compact and T Zp bounded, we have:

(3.15) R(A; 4) Tz, — %, strongly in X as ANO.
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By (3.13), (3.14), (3.15) and the uni imi ence, we deduce
H , (3. queness of the limit of a sequ

that z= 2" and that the convergence in 4)is, i i ’ fx

o) ; g in (3.14) is, in fact, in the strong topology of X.

(T*z ,w):(z Tw) 0
hZh hsdpw) = 0 as ANO, forallw e X,

From this last relation and (3 15) w |
. ; 3 e deduce that z = ¥ = 0 which is i i
tion with gz,,” = 1 and the strong convergence of {z;} to z.  iSFERte

Hence (3.9) is true. From (3.9) we ded |
enough, and so s(4,; + 7)) < .5'841) <(;3. Hee that ol + T,) < g el

Operatﬁi:{ijof if ;‘ hel?lrz;r;zdjr. tht {Sh(tzl;1 t 2110} be the semigroup generated by the

‘ ) n 0 prove the theorem we shall prove that

which by the s.d.g. condition 1 is equival Apaia g

i.g. ent to s(4, + T,) < 0, for / '

e q en 1 4,) <0, for 4 small enough,
: group generated by 4,, then assumption 2 impli '

(S < 0 and, because 5(4;) < o (S h 0. Brcat s

4 we can use the Lemma to (]Ieducé] Eha)t:we AR e

©o(Sy) =s(4; + T;) < 0, for & small enough

which concludes the proof,

4. APPLICATION TO DELAY EQUATIONS

Consider the problem of minimizi i
following delay equation: mintmizing (1.4) where the state is given by the

@1 {Z'(t)zAIZ(IHA”(’”)*BWO), >0
z(O):hO, Z(e)=h1(9) for —r<6<0,

where hy € R", h, € L'(~r, 0; R? i i i
, Iy 7, 0; R") are given, r is a giv iti
gclayt,. anc} f i ,) Az’ Bt')ﬂ are real matrices, 4 p A, e R*X "gBOe I; plgil)t(l’\’/ i o
quation (4.1) can be written in t} ’ :
:;Y= e % :;j 311:;'1 a;s:r;l{:; form (1.3) as follows (see [3]): define
The operator v D(ud) c X -5 X is given by: ‘

(4.2) Dlwt) = {(hg 1) & X; hy € W(-r, 0; R"), hy(0) = ho}
43 ) ,
(4.3) Mho, hy) = (Ayhg + Ahy (1), 1),
The semigroup generated by «is given by:
SO : XX, P)(hg,hy) = ((2), z)

where z is the solution to (4 i )
defined by: n to (4.1) corresponding to (kg , hy) and z, is the function
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z[0)=2(t+0), -r<06<0.
The semigroup () is differentiable for ¢ > r (see[3]). With A(A) =N -4, — exp(-
~Ar)4,, the spectrum of Ais given by:
o(A) = {A € C; det A(A) = 0}.
The operator #: U — X is given by:
4.4) Bu=(Byu, 0), forallu e U.

and it is compact.
The observation operators €, 6% : X — Z are given by:

45)  @hy, hy) = Cohy > G (hg,hy) = Clhy for all (hy, b)) € X

where the real matrices CY, C, € R"*? are chosen such that (ii) holds.
We shall present the averaging approximation of delay equations given in [1].

For each integer N, we divide the interval [-7,0] into N subintervals
[f}'v Jj:'v—l ], J=1LN, where t=jr / N. Let Xﬂv denote the characteristic func-
tion of [fj'\{,f}{]‘] for j=2,N and X{' the characteristic function of
[:f,tf]:[—rfN,O].

Consider the finite dimensional space:

sl ok
(4.6) xV = (ho,hl)eX;h1=ZV'}x’}-, V?’ER", j=1,N¢t,

=
and the operator &2 : X — XV defined as:
' N

N
@7 (o) = | 4+ bl S (W -1
where ' e
N - N_ N i=1LN
(4.8) W =ho k) == jt?., 0)de, j=1N .

Obviously, the parameter A is 1/ N. We do not need to approximate %,
BN = B for all N.
LEMMAS 3.6, 3.2 from [1] and Theorem 4.5 from [11] ensure that (i) is

satisfied.
We suppose that the pairs (o, ), (", #V) are detectable, for all N. The

pair (4 %) is detectable if and only if (see [10]):
rank (AMT, CT)=n forallAe C, & L 20.
We suppose that the pair (£, %) is stabilizable, i.e., there exists ¥ € KX, U) such

that & +BF generates an exponentially stable semigroup. A necessary and suffi-
cient condition for the stabilizability of the pair (4 &) is ({10)]:
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rank(A(X), B)=n forall A € C, #A > 0.

In order to have (iii) we must prove that /% + BF generate exponentially stable
semigroups, for N> N,. /¥ + BFis a linear bounded operator, .+ BF generates
a semigroup ,(¢) for which there exists Iy > 0, s.t. F(1,) is compact, and we
conclude that &4+ BF and A+ BF satisfy the s.d.g. condition. In order to show
(1.10) we may try to prove that s(./+ B%) < 0, Adapting the proof of Lemma 3.4
in [1] we can show that:

(4.9) (A + BF) > s(A+ BF) as N> oo

But s(#+%B%) < 0 which implies that s(.+B%) < 0 for N> N,.

Using the Arzeli-Ascoli theorem one can easily prove that the assumption
() in Corollary is true. The condition (B) is fulfilled because the semigroup gene-
rated by of - BB* PV has a compact element. From the Corollary we deduce that
A~ BB*FY generates an exponentially stable semigroup, if N > N,

From Theorem 1 we deduce only the weak convergence:

Pho,hy) — HAhg,h,) when N -5 o, forall (4, h,) € X,

but, in fact, the convergence is in the strong topology of X. This problem was
studied in many papers (e.g. [7], [13], [€], [5), [8]) under stronger hypotheses on
the operators involved, assumptions which are satisfied by the quadratic control
problem with state given by a delay equation bresented above,

We expect to give numerical results in a later paper.
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