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1. INTRODUCTION

Not only do the ratios of the consecutive Fibonacci numbers converge to ¢
(the golden number), but they are the “best” rational approximation to ¢ [2, p.
151]. We give a family of transformations, which include those of Newton, Halley,
modified Newton, Schroder which produces some ratios of generalized Fibonacci

and Lucas numbers.
Let p and g be two nonzero real numbers. Define the generalized Fibonacci

sequence
(D u0=0’ = 1, Upit =pun_qun-l’n2 ¥
and the generalized Lucas sequence

2) ' Vo=2, Vi =D, Vs =PV, —qV,.p 2 1.
Let d be a natural number. If u, 0, define the ratio

(3) r, = 2ntd
un

and if v, # 0, we also define the ratio

“4) R, = Yrtd >
Va

The characteristic equation related to the recurrence relations appearing in (1) and
@) s |

5) x*—px+g=0.

If o and P are the roots of (5), then they satisfy ([3])

(6) a+B=p, of=g, (@—P)>=(a+p)y-4ap=p>-4q.
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If o= then
@) 20=p, a’=g=p2), p’'- 4g=4a’-40’ =0,
LEMMA 1. [3] If o and B are the distinct roots of (5) and n 2 0, then
al L g
u,= o« — B and v, =o," + p",

LEMMA 2. [5] If o is the double root of (5) and n > 0, then u, = n( -g Y1 and

v, =2( g >

If d > 1 and the roots of (5) are real, then the sequences of ratios {r,} and
{R,} will converge to the d-th power of a root of (5). If equation (5) has distinct
roots, then the sequences {r,} and {R,} converge to the root of largest modulus,
and if the roots are equal they converge to that root. In other words, the sequences
of ratios {r,} and {R,} converge to a root of

®) X = (o + B + (@P)? = ¥ < vyx + 7= 0,

by Lemmas 1 and 2 and (6) and (7).

A necessary condition for a generalized Fibonacei or Lucas sequence to have
nonzero members is that equation (5) have complex roots ([4)).

In the following we consider some transformations for approximating the
roots of a single nonlinear equation f{x) = 0:

1. Newton transformation, N(x) = x — }{%,
2. Halley transformation, H(x) = x — j; (x) lf '(x) ,
| (r@) -1 16) )

CTNCN
(7 G - 1)
12 2 .,

4. Schroder transformation, Sx) = x - f(x) [f 3 (x)g], "[f (x)] S (x)

ROV OYEOVIe

3. Newton modified transformation, M(x) = x —

Related to these transformations the following references were proved [1],
(51, [6]): If flx) = x% - vx + g% as long as division by zero does not occur for the
integers n,d, then :
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1 N(un+d) - Yonid

Uy Up

) H[“.'l-f-d} L Wn+d
Uy Usp

3 M “n+dJ — Yon+d
Uy Von

U \'4

4. S( 71+d]: 3n+d’

U, V3p

We shall give an infinite family of transformations which includes all the above
transformations. This family of transformations also has similar properties related
to the ratios of generalized Fibonacci and Lucas numbers, '

2. PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS NUMBERS

For n> 0 define v_, = o™ + B~ Then by (6) and Lemma 1

(9) qn V_n = (aB)n V_n = Bn + an = Vn

' a—n _QR-n
Similarly, if equation (5) has distinct roots, define U, = a—_g.
By (6) and Lemma 1

(10 ey, = B2 -

Ifequation (5) has a double root, u_,, is defined by —n( g )1 then formula (10) also

hold. Relations (1) and (2) are also valid for negative subscripts.
In the following we shall list some elementary relationships about the se-

quences given by (1) and (2).
LEMMA 3. [3] If n is an integer then Uy, =U,V,.
LEMMA 4. [3] If n, m, and e are integers, then
() thysgtty.— U2 = 4",
(b) u

e =
(c) Uprelhmre =9 Uplhyy = Uty y iyt 05

) I
ntelm ™ Ynllpyie 4 Uy
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(Du,,. - q°u, = Vede,
(e)u,,, - 9°u, = —q°u,_,.
LEMMA 5. [3] If n, m, and e are integers, then,
@) VyreVne = V2 = 4"°(p* - dg) 2,
() VisoVim = Vi Vs o = 4" (p? - 4q)ugu, .,
(©) VareVmse = 4°V,V,, = (0* - A kgt o
@) Ve = 4%V, = (0% - 4q)u,u,,
) vy - VeVy = =4V, ..

If (5) has a double root (p* — 4q = 0), the left side of relations (a)-(d)
vanishes, :

LEM . ] = =
MA 6. [3] Ifn, m, and e are Integers, then u, +6Vm UpVipie = @MUV, .

LEMMA 7.[3] If n is an integer then u, ( v —g"= U,
Now we can state some properties useful for the next section,

Remarks‘:.Let he N *, nintegers, e = (h+1)n, and assume that division by zerov
does not occur in the following relations, Then: '

1. By Lemma 4(d) and ( 10) it follows

(11 ) u(h+l)n " 1
u(h+2)n v, — q" suhn
u(h+l)n

2. By Lemma 5(e) and (9) it follows

V(h+1)n % 1

V(h+2)n Ve—q" V:#”)
h+1)n

(12)

_ LEMMA 8. Let n be an integer, and assume that division by zero does not
occur for all he N *, Then

7]

2

ek ok h=(2k+)

(13) Upy  _ _EJ( i Chelen) '
Un+1)n B]

k -
) g™ kv
0

s V heN*.

k=
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Proof. We shall prove the above relations by induction. For A =1, by Lemma

3 we get Unl 1. -1— For » = 2, by Lemma 3 and Lemma 7 we also get
Wy Vi
Wn Z—V"——‘We suppose that (13) hold for 4. By (11) and (13) it follows
Usy \ " q" h
[5} k h-2k
Z(_l) an Cllf—k Vi
(14) u(h+l)n _ k=0
h h-1
R [E} k _nk ~k o h-2k {TJ k nk ~k h—(2k+1)
Van Z(—l) qn ChkVy _qn (—l) qn Ch-—(k+l) Vi
k=0 k=0
We distinguish two cases:

1. If & is even, it follows that . [h;l]:[g]—l, and since

k+1 k _ okl .
Ch—(e+1) T Ch(ies1) = Chk» we obtain

H 5]
2 2

k_nk ~k  h-2k k nk ~k h—(2k+1) _
Vi Z(_l) qrz Ch—k Vr: —fj‘” ,r;) (—l) 9” Ch—(}c+l) V{: ( ~

k=0
h-1

M
0 k1 n(k+1) k41 hH1=(2k+1
= (0" q"%Chovit + 3 (1)) gt (k)
=0 4

il
0 g1, A WL  ht1-21 0 100 el
~0 i +1- +
= (~1)"¢"°Cp_ovi* + > (1) g Chypg v =(-1)"¢" Cilyr_ovat +
=1 R
Th+l il
2

~{ 242 by '
1 l o
. Z ("l)lqnlcllwl—l V;}:H s Z (-1) q" ,Cll1+1—1 V;];H P
=1 =0

2

k -2k

i) YD) gk vi?
+)n k=0

Wh+2)n 7 [@—1

2

k LN
>, (D) g™ g v
k=0

and from (14) { ,’::‘

that is, (13) hold for 4 + 1.
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-"I 1 . .
Ll % i [}’2 ] [ ’12+ Proof. Similarly to Lemma 8
2. If h is odd, then 2 |T|7 | and since C =C

h—[-;'_"'_l] - }H.-l- iﬂ}j
2 2
it follows that

[ﬁ] Mh-1

2 2
k - ; k h=(2k+1
Ve > (~1) an Clltc—k V,’,' 2k M Z (-1) anck( (2k+1)
k=0

3. TRANSFORMATIONS OF SEQUENCES {r,} AND (R,)

Now we can give some generalizations concerning the transformat;ons
presented in Introduction. For a real function f, we consider transformations

h—(k+1) ¥n T of the form
- h-1
— 2 2m—2k ks ik
2 . & [f(x)] @] ()]
0 k+1_nk+1 h+1-(2k+1 *"
= (0w 4 Y (g gl pei-(akn) = :
=0 (15) ?;n (I) =% fl(x) m Im—2k kr o k
L= +1 "([%:ILlj [i:l "_(2[%]‘”) 2. [f '(x)] [f (x)] [f (x)]
+(-D2 ["yq c-? vy = k=0
h— P“—l]ﬂ)
2 [
. where m € N* and a, b, € R. ,
% -1 In the case of equation (8), for fix) = x" — vx+ g%, we get
0 n0~0 _h+l 3 ! nl Al 1-27
=(~=1)"¢"cy_gvi+1 4 2 (g Chatog v 4 e N ke k. 2m—k
I=1 q"ug Y a2 q" vy,
htl . Uprd | _ Upid k=0
)[h-l-l] H[_fg-_l} [izﬂ] ﬁ_l_z[ﬁ'zﬂ] [ 2 ] i by (16) -T;n[ ’:a]: !;: = = YL ;
e _ n . 1 i
+(_l 2 1q Cﬁ_[!’i}] Vn = ;Zg (—1) q" Chi1-1 VrixH-I . 7"n"n}§)bk2 7 Vn
2 5 3 o -
Now from (14) LEMMA 10. Let s € N *~{1}, n be an integer and assume that division by
[ﬁ zero does not occur. If m € N* and y,, z; € R, k=0,...,m, is such that
2
(-1)*g™ Ch_y vir2k 'Z" yy 2k gy m=2k
Y+ 1)n = T:O a7 Ys-1)n k=0
+ . = g Tt
u(h+2)n [——] Ugn - izk 2k anv2m—2k
k 1-2 n i
Z (—1) an C/Ilc+1—k V)}lH- k k=0

thatis, (13) hold forh +1,  *=0

then, for a, =y, and by =z, k=0,...,m,
LEMMA 9. Let n be an integer, and assume that division by zero does not
occur for all h € N*, Then

g | n() -

Ve n
2.0 g v

4(b
Y _ k=0 Proof. By (10) and Lemma 4(b)

= V heN*
i . P -1 sn .
V(h+1)n [% . ’ qn Uy u(.s'—l)n A _qn q(S )n uy u—(s—l)n =—q Uy u_(s—l)n =
Z ‘(—l)kan Cllzc+2—k V7}:+l—2k f = =" Ug Uy = U gy = Uy Ugp g
k=0
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and by (17)
m
qn ug Z Vi 2k anvgm—Zk
k=0

p™ :
ty VY 2 2K gk 2m=2k
that is, k=0

n
Untd Usn ~ Up Usnig _ 9 Yd Us_1)p 4

Uy Ugy, u,u

’
sn

m
qn U Z I 2k anv'l:m—Zk

Un+d ' k=0 i Usn+d
¥n < k_nk_2m-2k Usn
U, VnZZkZ q vy,
k=0

From the above relation and (16) we obtain

Un Hsn

THEOREM 11. Let m e N* and assume that division by zero does not occur. If

(-1¥c
@ = 22::-(1:4-2) Pk

sy —1. and a, =0,

(—) 2m ~(k+1)
—__"275_‘_"—, k=0,. -1, and 5

m =
jr;” [ Upsd J o Y mn+d

U, U2mn

by =
then

Proof. By Lemma 8

m-1
m-l
1k nk k 2(m—1)— k
“om-1n _ Z( 'e 52 i Z(—l) 7 Czkm ~(k¥2) Vn Ve
W m— l : =T e 1 =
(—l) ancéc = y2m=1-2k v, ~1)* 1k ck 2m 2k
]E) m-1-k ¥n Z( ) 9 2m k+l)
m~1 )
ch zk an V’%m-&k
= k=0
m~1 A
v, Z dk 2k an V’%m—Zk
k=0
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where i
k . k
(-0 Com(k+2) 0 G i)
= , di = , for k=0,...,m-1,
k k k
2 2
and
ch 2k an 2m-2k
Uoam-1)n
(u ) = , for ¢, =d,, = 0.
2mn v, Z d, ok * V’21m—2k
; k=0
By Lemma 10,

T [un+d) A Wmn+d I
" .
Hy Wmn
Similarly, we can prove: ‘
THEOREM 12. Let m € N* and assume that division by zero does not occur. If
|

k

(e |
—(k+1
o ), & o, m 1, and a, =0,
2
k ~k
bk ll (_1) C'2m—k

=——== k=0,..,m
then 2k

T ( Up sl J _ Mam+)nta
) :
Un Uom+)n

ak=

THEOREM 13. Let m € N* and assume that division by zero does not occur . If

k
e y - D ok

day s O ,k=0,...,m
’ ok - oF

then

T,

m

(u,,+d ] _ Mom+2)ned

Un u(im+2)n

Remarks: 1. Form=1and a, = by=1, a; = b; =01in (15), we get

T (x) = N(x), the Newton transformation,

and by Theorem 11
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Tl(urﬂd) = Wn+d
Uy Wp

2.For m=1anda;=b;=1,a, =0, b1=—% in (15), we get
T(x) = H(x), the Halley transformation,

and by Theorem 12

Tl Un+d 5 U3n+d
Uy 3y

3.Form=1landay=by=1,a;= —%,b1=—1in(15), we get

1] - 3]

H(x)=x- , a transformation from [7).
@ )

and by Theorem 13

Uy Usn

T-i (un+d) me Udn+d .
Similarly we can choose ay, by in (15) such that,

7 (un+a’) _Yn+d
| 2 | = Jontd

un VSIZ
for some values of m and s.

THEOREM 14. Let m € N* and assume that division by zero does not occur. If

k -k
-1)" G5, -
a :M, k=0,1,.,m~1, and a, =0,

2k
k ~k
-0°c;
2m~(k-1
by = ;:n (k1) , k=0,1,...,m,

then 2
T (”}H‘d) — Vomn+d
Uy Vomn

Remark. Form=1 and ay= by =1, a; = 0, b;=-11in (15), we get
Ty (x) = M(x), the modified Newton transformation,
and by Theorem 14
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Tl (un+d) e Von+d )
Uy Von
THEOREM 15. Let m € N* and assume that division by zero does not occur. If
k ~k
-1°¢
2m—(k-1
ay = 3 (1) , k=0,1,...,m,
2
k ~k
(-1¥c
2m—{k-2
bk= = ( ) » k=0,1,...,m,
2
then
( Uyt ) V(em+1)n+2
I, = |
Uy V(2m+1)n

Remark, Form=1 an_d ay=by=1,a,=-1, b= —% in (15), we get
T, (x) = S(x), the Schroder transformation,

and by Theorem 15

T (un+d) — V3ntd
Uy Vin
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