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1.INTRODUCTION

In this note we are interesed in completing some results concerning the
convergence of the Newton-Raphson method for solving a scalar equation f{(x) =0,
when conditions involving only fand /' are required ([1] -[2]).

A classical result on the Newton-Raphson (or Newton’s) method is given by
the following theorem (see, for example, [6], pp. 128).

THEOREM 1. Let  f: [a,b] > R, a<b, be a function such that the following
conditions are satisfied

() f(a)f(b)<0;
(f) feCz[a,b] and f’(x)'f"(x)# 0,x e[a,b].
Then the sequence (x,) defined by

f(xll )

>0
7Gx

(1) Xl =Xy~

converges to o, the unique solution of fix) =0 in [a, b], for each x €[a, b] satisfying
fxy) " (x,) > 0 and the following estimation
M.
!)C,, —algynzl,xn X1

2
,n=>1

holds, where
= minf'(x)| and M,= "(x).
my xg[gg]lf (%)] and M, ;g[%]lf ()]

Theorem 1 is very convenient for practical purposes but condition (f}) is too strong,
as shown by
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Example 1. [5] For f(x)=tanx, xe[a,b]c(%,%), with & € [a,b], we have
feC? [a,B], f'(x) > 0, but f"(x) =0and o =7 is the unique solution of the
equation f{x) = 0 in [a, b]. Theorem 1 does not apply in this case, but the
Newton’s iteration (1) converges for each x, e[a,b], in view of Theorem 2 below.

For example, if we take a= 11% , b= 1177“ and x, =a , we obtain the value of ©

with 14 exact digits after 7 iterations: x=1.83; x=2.08; x,=2.51; x,=2.99; x,=3.139;
x=3.141592644; 75 —Sk 1415926535897944 and x7=3.l41592653589793.

Taking x, = 277': we obtain the solution after 5 iterations x,=2.09; x,=2.527;

x,=2.998; b SMIC0s x,=3.141592648 and x=3. 141592653589793.

So, the following question arises: can we obtain the convergence of (1)
under weaker conditions on f? A positive answer - itself a classical result - is given
the following theorem due to Ostrowski [9], see [8], pp. 316-318. '

THEOREM 2. ([9], Theorem 7.2, pp. 60) Let (%) be a real function of the real
variable x, flx)f '(%g)#0, and put hy = - f/f '), Xy =X T B

Consider the interval Iy =[x, X, +2h;) and assume that {"(x) exists in Iy, that

" :M d
max|f(3)| =M, an
2'h0‘M2S|f'(x0)' :
Then for the sequence (x,) given by (1) we have that x, lie in I and

x, —>o(n—>w),

where a. is the only zero of fin I,.

Remark. The assumptions in Theorem 2 are still too strong as shown by

Example 2. [5) Letf: [-1,1]9R, be given by flx) = 2+ 2x, if x e[-1,0),
and flx) = x2+ 2x, if x €[0,1]. The unique solution in [-1,1] of the equation fx)=0
is a=0. Since f" does not exist in 0€f, Theorem 2 does not apply. However,
as will be seen in the next section, the sequence (1) is convergent. For example,
if we start with 0.5, we obtain x; = 0.833333; x, = 0.0032051; x; = 0.0000129;
x, = 0.0000001 and x; = 0. !

3 Newton-Raphson Method 17

: In view of these examples and remarks, in [1] — [5] i

: : 5 - we have established
weak'er hypotheses on f which provide the existence and the uniqueness of the
solution, the convergence of Newton’s method, as well as the errors estimates

The aim of the present paper is to improve th i
sions from [1] — [5]. P ¢ assumptions and the conclu-

2. THE EXTENDED NEWTON’S METHOD

Letf: [a,b] >R be a function satisfying (f;) and

 (f)feClab], ) #0,x €lab).
Then fhas a unique solution a.e(a,b). Let F:[a,b] >R be given by

() F(x)=- &, x€la,bl.
fu(x) [ ) ]
Then the equation
Sx)=0
is equivalent to the fixed point problem
x=F(x).

If f satisfies th ditions i o )
wej;ave e conditions in Theorem 1, then for xe [a,b] satisfying fix) f"'(x)>0

F(x)e(a,b],

and the sequence of succesive approximations, (F *(x)) converges to o as n—»oo,
Let us now assume that f'satisfies (f}), (f',) and that Newton’s iteration

(3) xn+l=F (JCn)

converges to the unique solution of the equation f{x)=
This means ;| S)=0, for each xy&[a,b].

1) F: [a, b]—>R has a unique fixed point a::
2) For each x&[a, b], the sequence of successive approximations converges to o,

F'(x,)—a, as n—co.

These two properties suggeét to consider Bessaga’ ' :
- _ ga’s theorem, one of th
results in the fixed point theory (see, for example [10]) . R

THEOREM 3. Let X be a nonempty set and F:X—X be a mapping such that .
Fop ={x*}, Vk eN*(whcre F,={xeX/gx)= r}) :

Let ye (O,_l) be a constant. Then there exists a metric d on X such that
a) (X, d) is a complete metric space;
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b) F is a contraction with respect to d, i.e.
d(F(x), F(y))s y-d(x,y) , Vx,yeX.
If our previous assumptions are satisfied, Bessaga’s theorem considered

for X= [a,b] and F given by (2) shows that there exists a metric on X such that

F is a contraction.
This was the basic idea in proving the convergence of Newton’s method

in [1] - [5], where, in order to assure the invariance of the domain with respect to
F, fis prolonged to the whole real axis and the prolongation is denoted by f* too:

f(a)-(x-a)+ f(a), if x<a.
f(x)=1r(x), x €[a,b]
f'(b)-(x~b)+ f(b), if x>b.

The main result of this paper is given by
THEOREM 4. Let f: [a, b] >R a < b, be a function satisfying (f,), (f3)

and (f3) =
m>M,

where

m = ngg},] f'(x)l , M= x];['li)g]lf'(x)' :

Then the extended Newton iteration (I) converges to a., the unique solution
of fix)=0in [a, b] and the following estimation

PAEM]

4) |x, —a|< —x,,HJ, nz0,

x"

holds.
Proof. The basic idea of the proof is similar to the one in [1]-[5] but

there exist diferent arguments.
Obviously, from (f;) and (f",) it results that {x)=0 has a unique solution o€ (a, b)

Let F:R—>R be given by
f(%)
%) E(x) 2~e=Lsike’R |
)=
Then, a is a solution of f(x)= 0 if and only if a is a fixed point of F, that is
Fla)=a
and
f(x) [ (%)
Flx)—-a=x- et
( ) fu(x) fv(x>
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But
SO=f®)-0=1(x)-f(a),
hence, from () and the mean value theorem we deduce
f®=r'v)- xo),

where y = a+A(x—a), 0<A<I,
Then

x)—o=(x~-a)- f(y)
F(x) ( ,)(1 f(l))v eR,

Using (f"',) it results that /' preserves a sign on [a, b] J, hence f'(»)/f '(x)>0 on
R (since f'(x) = f'(a), ifx < a and f'(x) = f'(), if x > b)

This means.
()
1- <1, Vx,yeR.
/() 4
On the other hand, from (f;) we obtain
f'0) f (y o) M
S(x) ‘ (x ] m
which shows that
f'()
-———=>-1, V
f'(x)> , X,y e[a,b].

Now from the continuity of fand the fact that f is actually defined on the compact
interval [a, b] it results

S'(x)

which together with the previous relations, yields

6 k= max
. b

1= <1,

'F(x)—oc'ﬁk-,x—oc,, Vx eR,
and0 <k <1. By inductién we then obtain

’F"(x)—ocls kn -l'x—otl >
which shows that
Fr(xg) > o, as n— o,

for each x,eR.
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In order to obtain (4), from (5) we deduce, by using the mean value theorem,

Frot () = 9 (30) = ysa = %y = % SR

where
cn=a+p(xn-a), 0<!’|'< 1 ’
which yields

| 7'(x,)]

m

|x, —o|< xn—x,,HI,nZO.

The proof is now complete.

Remarks. 1) Let us observe that if some x_ (say x,) does not belong to [a, b,
this fact is unimportant for the convergence of the method. If, for example, we
have xp< a, then

Fp+i :xp_f'(xp) T 7'(a) )
hence _
p+l —a_ff,((z)) >a,

because, from (f}) and (f ') we have f(a) - f'(a) < 0.
In a similar manner we obtain that x pp < b, if x, > b.
This means that the extended Newton’s method consists in applying Newton’s
method on [, b] and the modified Newton’s method for x > bandx<a,

2) The estimate (4) is an improvment of the corresponding estimate in [1]-[5].
It shows a linear convergence for Newton’s method. :

3) The convergence of Newton’s method for the function f(x) in Example 1 is
now an easy consequence of Theorem 4.

4) In view of Edelstein’s fixed point theorem, see [10], condition (f 3) in
Theorem 4 may be replaced by a weaker condition. We thus obtain a more general
result given by

THEOREM 5. If fsatisfies (f)), (f \) and

(f3) 2m=M,
then the conclusion of Theorem 4 remains true.

Example 3. If f'is as in Example 2, we have M=4 and m=2, Theorem 4 does
notapply but we can apply Theorem 5. Thus Newton’s iteration is convergent,
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Remarks. 1) Theorem 4 or 5 may be extended to R”, as in [1];

2) For f as in Example 1, if we start with any Xy < a we obtain x,=2.08,
x;=2.51 and so on, the same iterations as in the case xy=a;

3) If feC'[a,b]\C?*[a,b] then Newton’s method generaly converges
linearly, but if however /' is lipschitzian or there exists f", then the
convergence is quadratic;

4) As shown by some recent numerical tests performed on an IBM PC
compatible computer, under MATCHAD, condition (;) and respectively (f',) seems
not to be necessary fot the convergence of Newton’s iteration.
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